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Path integrals in quantum cosmology differ both in formulation and interpretation
from ordinary path integrals. After reviewing the highlights of these differences, I
shall discuss in detail a particular model with a cosmological constant. This exam-

ple contains some interesting features connected with space-time transformations
in the path integral.

1 Introduction

Path integrals play a prominent role in modern physics [1]. Their application
ranges from quantum mechanics, statistical mechanics up to quantum field
theory. It thus seems natural to apply path integration also to quantum
gravity, a theory being still in the process of construction.

In this context, interest focuses mainly on two issues. First, path integrals
are applied to the full gravitational field in order to find a nonperturbative
formulation of quantum gravity. This is also a convenient starting point for
lattice formulations. Second, path integrals are frequently formulated for
finite-dimensional models of quantum cosmology in order to study features
of the early Universe, in particular in connection with an inflationary phase.
Here, applications are usually made for an energy regime somewhat lower than
the Planck scale. This gives rise to the hope that the results are independent
of the unknown behavior of the full theory.

This contribution to Hagen Kleinert’s Festschrift focuses on the second
application. In the next section I will review the main properties of a quantum
cosmological path integral and discuss some results for a simple model — the
indefinite harmonic oscillator. Interesting consequences are drawn for the
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meaning of the no-boundary condition in quantum cosmology. The third
section contains a model that has not yet been studied in the present context
— a Friedmann model with a cosmological constant. In the evaluation of the
path integral, it is necessary to take into account the curved nature of the
configuration space. Some technical details are relegated to the Appendix.

2 General Properties of Quantum Cosmological Path Integrals

In quantum cosmology one focuses on finite-dimensional models whose Hamil-
tonian is given by

H= %G“b(q)papb +V(q), (1)

where ¢ is a shorthand notation for n degrees of freedom. These can be the
scale factor(s) of a cosmological model plus homogeneous matter variables.
Classically, this Hamiltonian is constrained to vanish as a consequence of the
reparametrization invariance of general relativity. The coefficients G*® denote
the (inverse) metric on configuration space (DeWitt metric or superspace
metric). For a discussion of its features see e.g. Ref. [2]. In the canonical
version of quantum gravity, the classical constraint is turned into a condition
on allowed wave functions, the so-called Wheeler-DeWitt equation

Hip(q) =0 (2)

The corresponding path integral has to be formulated within the theory of
constrained systems, i.e. including gauge fixing and Faddeev-Popov ghosts.
In the present finite-dimensional case, the procedure can be highly simplified
and leads to the following path integral (for a review see e.g. Ref. [3])

G(d',q") :/ dT / DpaDq® exp <l /OT dt (pag” H))
~ [ ar w100, 3)

where (¢”,T|¢’,0) is an ordinary quantum mechanical propagator which sat-
isfies the Schrodinger equation. Since quantum gravity does not contain any
external time parameter, time must be “integrated out” to get the correct
path integral. The range of the T-integration in Eq. (3) is not fixed a priori.
Since integration along the real axis leads in general to a divergent result, the
idea is to look for contours in the complex T-plane that render the integral
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convergent [3,4]. In order to prevent a violation of gauge invariance, atten-
tion is restricted to either infinite contours, half-infinite contours starting at
zero, or closed loops around the origin [3]. Infinite contours and closed loops
should then lead to solutions of Eq. (2), while half-infinite contours should
yield Green functions.

Due to the T-integration in Eq. (3), path integrals in quantum cosmology
have different properties than quantum mechanical path integrals [5]. In fact,
they behave more like energy Green functions [1] rather than propagators, as
was first emphasised by H4jicek [6]. For this reason, they do not obey any
composition law, which means that they are not intimately connected with
an external time variable. A simpler but similar analogy for the path integral
in Eq. (3) is provided by the proper-time representation for the relativistic
particle [5]. Due to these properties of the path integral, the central interest
focused on the relation between boundary conditions and the choice of metrics
to be integrated over [7]. The famous “no-boundary proposal” by Hartle and
Hawking [8] aimed at finding a unique solution to the Wheeler-DeWitt equa-
tion (2) by integrating only over compact (“finite”) geometries. This should
have yielded the “wave function of the Universe” (for a critical assessment
concerning physical interpretations of the no-boundary wave function see,
e.g. Ref. [10]), but it did not. Even when integrating over complex metrics
corresponding to the complex T-integration above, one gets a whole class of
solutions to Eq. (2).

Still, it is of interest to investigate this distinguished class of solutions in
more detail. The question posed in Refs. [5,9], for example, was: Can one
get special cases which reflect the properties of classical solutions from the
class of no-boundary wave functions, i.e. can one construct wave packets that
follow a classical trajectory in configuration space?

The simplest nontrivial model to investigate this question is the indefinite
oscillator which has the advantage of being exactly soluble. The Wheeler-
DeWitt equation (2) then reads

2 2
0= (50— g - 3¢ (o) =0, (@)
where a denotes the scale factor of a closed Friedmann Universe, and x a
(rescaled) conformally coupled field. The classical solutions of this model
would consist of trajectories (“Lissajous ellipses”) that are confined to a rect-
angle around the origin. The interesting point is that the path integral (3)
can be exactly evaluated for this model. The path integration over Da and
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Dy gives the usual result for the harmonic oscillator [1], but with the relative
sign between the two oscillators reversed. The remaining T-integration then

reads
1 dT )
N/ N
Gl i) = g [ e (ap(@esT Q) L 6)
with
2 2 2 2
Q] = X// + X/ _ (a// + a/ )’ (6)
Qs = _2X/X” +2d’d" . (7)

One can interpret the no-boundary proposal as imposing the values o’ =y’ =
0 and looking for contours in the T-plane that render the integral convergent.
It turns out [5] that for half-infinite contours the result of Eq. (5) is

Gafan) = 5K (551 ®)

2T 2

where Kg denotes the modified Bessel function, while for an infinite contour
the result is

2 2
Ga(a,x) = %IO (%) ) (9)
with the Bessel function Iy. While Ky is a fundamental solution to Eq. (4),
Iy is its associated Riemann function. Other convergent contours only yield
linear combinations of these functions. Inspecting the asymptotic behavior
of G1 and G2, one recognises that G diverges along the “lightcone” in the
(a, x)-space, while G5 diverges exponentially for large arguments. Therefore,
neither of these two solutions can be used to construct wave packets following
the classical solutions. This is an important result, since it demonstrates that
the relation between no-boundary solutions and the classical theory is very
loose. My conjecture is that these properties hold in general. The asymptotic
behavior does not change if the condition a’ = x' = 0 is relaxed.

The path integral, when evaluated exactly, does therefore exhibit proper-
ties that cannot necessarily be seen in a semiclassical approximation. This
has consequences, for example, for the discussion of the arrow of time in a
recollapsing quantum Universe [11].
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3 Quantum Cosmological Path Integral for a Model with a Cosmo-
logical Constant

The purpose of this section is to discuss a quantum cosmological model which
exhibits certain nontrivial features with respect to path integration in curvi-
linear coordinates. Configuration spaces with curvature (and torsion) find
fruitful application, for example, in quantum mechanics with a Coulomb po-
tential [1,12]. For our purpose it is sufficient to consider a one-dimensional
model in which the Wheeler-DeWitt equation (2) is given by

2
Hi(a) = % <% —eto 4 /\2e8a> Y(a) =0. (10)
Here, o = lna, where a is the scale factor, and A? denotes a positive cos-
mological constant. It should be noted that the term arising from general
relativity would read A\2e%®; however, the choice in Eq. (10) enables an exact
evaluation of the path integral, without changing the qualitative features of
the realistic model. It is also possible to obtain the potential used in Eq. (10)
from general relativity, but this would require a very unrealistic equation of
state [13].2

Due to the presence of the complicated potential in Eq. (10), a direct
evaluation of the path integral (3) is impossible. One can, however, try to
perform a space-time transformation in the path integral to cope with this
problem. Such a procedure has turned out to be very useful for evaluating
path integrals in situations where a direct calculation is unfeasible. This has
been elaborated in Ref. [12], where the hydrogen atom has been mapped
into a harmonic-oscillator system, which is why it is now called the Duru-
Kleinert transformation. Several other systems have been investigated by
this method [1,14,15]. A particular example is the case of the Morse poten-
tial which can be mapped into the system of a harmonic oscillator with a
centrifugal barrier [1,15]. In fact, the potential in our model (10) is similar
to the Morse potential, which is why an analogous transformation can be
applied.

Because Eq. (10) resembles the case of Liouville quantum mechanics, the
transformation

1
q:e2a<:>a:§lnqu(q) (11)

2] am grateful to Alexander Zhuk for pointing this out to me.
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is convenient. Thus one finds for the Hamiltonian

. d2 d q2 >\2q4
H=2(—+q¢—) -~ ) 12
(q dq2+qdq) 5 T 5 (12)

The next step is to introduce a time-transformation in the Da part of the path
integral (which is an ordinary quantum mechanical path integral) according
to

dr
dt = [F'(¢)]Pdr = —— 13
[ (Q)] T 4q2 (T) ) ( )
with 7(T) = s. This simplifies both the kinetic and the potential term. One
arrives at the new Hamiltonian

i =P (

(14)

2 1d\ 1 Mg
2 8

@ " qdq 8

It is shown in the Appendix that the implementation of all these transforma-
tions in the path integral leads to the appearance of a quantum correction

1

AV = —
V=sa

(15)
to the potential. It is called quantum because it is proportional to h? (here
set equal to one). The correction appears because the lattice definition of the
path integral requires the use of a certain ordering prescription for coordinates
and momenta [1], which is given in the present case by Weyl ordering and
midpoint prescription (see the Appendix). It should be emphasised, however,
that this quantum correction to the potential is a formal correction which is
needed for a correct evaluation of the path integral; there is no correction
whatsoever to the potential in the Wheeler-DeWitt equation (10). In fact,
the path integral is used to gain solutions (or Green functions) to Eq. (10).
The path integral can then be written as
1

G /I7 / — /d //’ ’ I,O — X
@ q) 2Vd'q" 0700 = 3 7q"

q(s)=q" is s qZ 1 /\2(]2
ds/ Dq(7) exp (— +2'/ [— - — } dT) . (16)
/ q(0)=¢’ 8 0 2 8¢ 8

The origin of the factor 1/2y/¢’q” lies in the demand for covariance with
respect to point canonical transformations [1]. An exact expression for
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(q",s;¢',0) can be given if one recalls that the path integral corresponding
to the Lagrangian

L(x,x'):.————— (17)

can be expressed in closed form [16]. The present case corresponds to the
choice g = —1/8 and w? = A\?/4, remembering that the kinetic term in our
model is negative definite. It is interesting that this value for g corresponds
to the limiting case in quantum mechanics, where a particle can fall into the
centre under the influence of a radial potential. We thus have

(d",5:4',0) =

iIMNG G is  iN. 2,2 As —-A'q"
WA (B2 22 o (9T (18
25inh(As/2)eXp<8 pla" +dTleoth ) o SRy ) (8)

where Jy denotes a Bessel function.

For A # 0, the classical solutions are constrained to regions a > «p,
where ag = —(1/2)In A is the zero point of the potential (there exists also
the possibility of the classical system to sit at « = —o0).

Turning to the evaluation of the path integral (16), the integral to be
evaluated reads, taking into account Eq. (18),

G(qll7 q/) —

. dr T iA 72 7”2 —)\q’q

, — = — thr | J, , 19

7/2sinhTeXp (4)\ 4[q a7 Jeothr ) Jo 2sinht )~ (19)
where 7 = As/2 is introduced as the new integration variable. This integral
can easily be evaluated by a steepest-descent approximation, similar to the
discussion in Ref. [5]. One thereby finds saddle points contributing either a

factor e~¢/* (saddle points in the upper half plane) or a factor e/* (saddle
points in the lower half plane), where ¢ is positive. If A\ were dynamical,

this would lead to a “peak” of the wave function either at zero or infinite
cosmological constant. Consider now, for the case Ag > 1, the contour parallel
to the real axis of Fig. 1. It can be deformed into a contour (shown as
a dashed line) which receives its dominant contributions from the steepest-
descent paths through the saddle points C and D. The integral (19) can,
however, be evaluated ezactly along this contour for any value of ¢’ (not
necessarily no-boundary conditions). Writing 7 = p + im/2, one finds

G(d",q) = %eXp (*8%) X
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Figure 1. The exact integration contour (solid line) can be deformed into a contour
(dashed line) which receives its dominant contributions from steepest-descent contours
through the saddle points C and D.

> dp Zp l)\ 12 12 iAqlq”
—_ - — tanh p | J 20
/oocoshpeXp (4/\ 4l +q"Jtanhp | Jo 2coshp )’ (20)

which yields the result [17]

—imexp(—m/8\ irg> ixg"?
G({".qd) = (=n/ )]Wz‘/s/\,o (T M;/8x,0 5 , (21)

~ A\¢'q" cosh(m/8)\)

where M denotes the Whittaker functions. One can easily see that Eq. (21)
satisfies the Wheeler-DeWitt equation (10) for both arguments. The expres-
sion in Eq. (21) separates in ¢’ and ¢”, so there is not much loss of generality
in discussing only the case ¢’ = 0. In this limit, Eq. (21) becomes

mexp(—7/8\) o 1 4 iAG?
G(q) 3 cosh(n/3V) exp(—iAg* /)M | 5 — oo L—— ), (22)
with
1
M, . (2) = e 2 /24 (5 +u—rK,14+2p, z) ) (23)

which relates Whittaker’s function to Kummer’s function. It is not surprising
that the above expressions resemble the expressions for the energy Green
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function in the quantum mechanical case of the Morse potential [15].
Both the semiclassical approximation to Eq. (22) and the steepest-descent
approximation to Eq. (19) yield the same result, namely

Ag>1 T In2\g A 1 T
Gla) 2\/,\2”’( o) °S< D 1w 1) @

The factor exp(—m/8)) is the usual WKB penetration factor that would cor-
respond to a particle tunnelling from ¢ = 1/X to ¢ = 0. The concept “tun-
nelling” must, however, be used with great care, since no tunnelling process
is happening — due to the absence of any external time. This is a major
difference between quantum mechanics and quantum cosmology [10,11].

Appendix

The origin of the problem with path integration on curved manifolds (or in
curvilinear coordinates) lies in the very definition of the path integral, which is
only valid in Cartesian coordinates. The occurrence of a quantum correction
AV to the potential is directly connected with the ordering prescription of
the lattice coordinates and momenta in the action, which in turn is related
to operator ordering in the Hamiltonian [1].

For a quantum mechanical system whose classical counterpart is given by
the Lagrangian

L(g,d) = S9a(a)d"@" = V(q) . (25)

the corresponding Hamilton operator is Weyl ordered, if the midpoint pre-
scription is used in the path integral [18], i.e. if the lattice action is taken to
be of the form

N
5= (sroa(@laf g D@} k) V@), (20)

k=1
where
_ qx + qr—
h=—"5 — L. (27)
The Hamilton operator is Weyl ordered, if it is of the form
1 al a al
Hy = —(9*"Papb + 2pag“*po + Pappg™) + V (q) , (28)

8m
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and it is obtained by randomly ordering all coordinates and momenta, count-
ing all different orderings once and forming their arithmetic mean.

The natural ordering for the Hamiltonian, however, consists in the choice
of the Laplace-Beltrami operator Ay g for the kinetic term, because this pre-
serves the covariance of the theory. In fact, this is what one arrives at, when
performing a transformation from Cartesian to curvilinear coordinates. We
thus consider the Hamiltonian

1 1
H=—Arp+V(a) =59 " *pag™y"*pg " +V(e) = Hw + AV, (29)

where g is the determinant of the metric g,;. To evaluate the matrix element
(¢'| exp(—iHt)|q) with H according to Eq. (29), we thus have to take into
account the correction AV in the action (26). The canonical momenta are
given by

e 1( 7] _'_laln\/g) ’ (30)

i dq® 2 0g°

because they are in this form — as well as the Hamiltonian (29) — self-adjoint
with respect to the inner product

(ply) =/ dq/9¢" ()Y (q) - (31)

By comparing Eq. (28) and Eq. (29), one finds an explicit expression for AV,

AV = o (g™T4, T~ B) (32)
where I'¢, and R are the Christoffel symbols and the Ricci scalar of the
configuration space, respectively.

In the quantum cosmological model discussed in Section 3, we can easily
find AV directly. Starting from Eq. (14), we first recognise that due to the
time transformation (13) the kinetic term of H is not the Laplace-Beltrami
operator with respect to any metric. The procedure described above has
therefore to be slightly modified. The Hamiltonian H is self-adjoint with
respect to an inner product of the form (31), where /g, however, must be

changed into
d
J(q) = exp (/ f) =q, (33)
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arising from the first-derivative term in Eq. (14).> The canonical momentum
then reads according to Egs. (30) and (33)

o d 1
ro=—i(g+5) (31)

leading to

(35)

Due to the trivial form of the second-derivative term in Eq. (14), this is
already Weyl ordered, and AV can be directly read off, leading to the expres-
sion (15). Finally, I would like to mention that all these transformations can
be implemented consistently into the measure of the path integral, leading in
fact to the expression (16) with the correct prefactor.
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