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We present a connection between the critical behavior of correlation functions and
the general theory of asymptotic behaviors of Feynman amplitudes. Using the
Mellin representation of Feynman integrals, an asymptotic expansion for a generic
Feynman amplitude can be obtained for any set of invariants going to zero or to co.
If we take all masses going to zero in Euclidean metric, the truncated expansion has
a rest compatible with the convergence of the series. In analogy to the application
of field theory to critical phenomena, we consider from our general asymptotic
expansions the critical behavior of correlation functions, in particular the critical
behavior of the two-point function.

1 Introduction

In field theory, a special situation arises for Euclidean Green’s functions in
the momentum representation, when vanishingly small values for the external
momenta are considered besides the zero-mass limit for the fields. In this
case, we speak of the infrared (divergent) behavior of correlation functions.
These divergences, which are seen as a “pathological” behavior in the context
of applications of field theories to particle physics, are associated with the
large-distance correlations in statistical systems and play a crucial role in the
study of critical phenomena and phase transitions in such systems.

In this note we adopt a mathematical physicist’s point of view, in the
framework of perturbative field theory, starting from the observation that
infrared (critical) behaviors of correlation functions in Euclidean field theories
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may be seen as a special case of a general class of asymptotic behavior of
Feynman amplitudes, as some of the involved masses tend to zero. The use
of the perturbative method can be justified in applications of field theory
to critical phenomena, for the examples of models of field theory that have
been found to give relevant informations. These informations are controlled
by the free field fixed-point, or by fixed-points that approach the free field
fixed-point in some limit. This means that the Feynman diagram approach
to field theory plays an important role in understanding physical situations in
critical phenomena. As we have stressed above, the large-distance correlations
in statistical systems are particularly important, as they play a crucial role in
the study of phase transitions. In field theory language, these large-distance
correlations manifest themselves as infrared behaviors of correlation functions,
which are in perturbative language a particular case of asymptotic behaviors
of Feynman amplitudes. This is one of the reasons why the analysis presented
in this note could be interesting for the perturbative field theoretical approach
to critical phenomena. For a complete account on the application of field
theoretical methods to critical phenomena the reader is referred to the books
by Kleinert [1].

Divergent large-distance behaviors of renormalized field theories contain-
ing massless fields and infrared divergences received a large amount of atten-
tion over the last decades. Historically, in applications to particle physics,
they have been considered as an indesirable feature, a kind of “illness” of
the theory which should be “cured” at any price. Actually these divergences
appear at different levels. For Green’s functions in Minkowskian metric it
has been shown a long time ago that for some theories (e.g. QED4) Green’s
functions exist at the zero-mass limit for some particles, as distributions on
the 4-momenta. This means that Green’s functions are well defined quanti-
ties in the infrared limit [2]. For particles on mass shell, Green’s functions
generally do not have a limit for those theories, even if they are well defined
off mass shell. The oldest and best known examples are infrared divergences
in scattering amplitudes in QED. Since the work of Bloch and Nordsieck [3],
this problem has been investigated exhaustively [4,5].

It is worthwhile to emphasize that, in contrast to what happens in applica-
tions to particle physics, in applications of field theory to critical phenomena
both ultraviolet divergences and infrared behaviors need not to be “cured”.
The ultraviolet cutoff is related to the inverse of some fundamental length of
the system such as the atomic scale and the infrared behaviors of correlation
functions describe directly the approach to critical points.
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We make use of Mellin transform techniques to represent Feynman inte-
grals, along similar lines as it has been done to study renormalization and
asymptotic behaviors of scattering amplitudes [6-8], and to study the heat
kernel expansion [9]. To fix our framework we consider a theory involving
scalar fields o;(x) having masses m;, defined on a Euclidean space. For sim-
plicity we may think of a single scalar field ¢(«) having a mass m. A generic
Feynman graph G is a set of I internal lines, L loops, ¢ connected components
(a graph is disconnected if ¢ > 1) and n vertices linked by some (polynomial)
potential. To each vertex are attributed external momenta {p;} and internal
ones {k,}. A subgraph S C G is defined as a graph, where all lines, vertices,
and loops belong to G and a quotient graph G/S is a graph obtained from
G reducing S to a point. A ¢ — tree of the diagram G is a subgraph of G
having ¢ connected components, without loops and linking all vertices of G.
The cases ¢ = 1 (1 — trees) and g = 2 (2 — trees) are of particular interest
for us.

The Feynman amplitude G({ax}) corresponding to the diagram G is a
function of the set of invariants {a } built from external momenta, 3, p?, and
squared masses m?; it is defined in the Schwinger-Bogoliubov representation
by [2,10]

oo I V(ia
G(ak):/ [[doU 8 (a)e 7, (1)
0

i=1

where D is the Euclidean space dimension with a positive metric.
In the above formula, the Symanzik polynomials U(«) and V' («) are con-
structed from the graph G by the prescription

U) =Y ] a (2)

1.T ig1.T

and

Vi) = (L) | TL o) + | Zmies | v @

2.T ig2.T jea

where the symbols >, ~ and >, ;- mean summation over the 1 — trees and
2 — trees of G, respectively. The sum ) p; in Eq. (3) is the total external
momentum entering one of the 2 — tree connected components (any one of
them equivalently, by momentum conservation). Notice that U(«) and V(«)
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are homogeneous polynomials in the a-variables, of degrees L and L + 1,
respectively.

2 Mellin Representation and Asymptotic Expansions of Feynman
Amplitudes

In the following we have in mind the physical situation of the infrared behav-
ior, but we would like to emphasize that our method is quite general, in the
sense that it applies to any asymptotic limit in Euclidean metric (any choice
of the subset a; below), for arbitrarily given external momenta, generic or ex-
ceptional, and for arbitrary vanishing or finite masses. If we perform a scale
transformation on the subset {a;} of invariants, a; — Aa;, the polynomial V'
splits into two parts,

V(Aam) = AW (a, ) + R(agq, o), (4)

where the polynomials W (a;, &) and R(aq, @) are also homogeneous of degree
L + 1 in the a-variables.

To be concrete we consider here a special situation with the external
momenta {p;} fixed and we investigate the limit A — 0 corresponding to
vanishing masses. In this case W is just the second term in Eq. (3). As we
have noted above, the method applies along the same lines to any other class
of asymptotic behavior. Indeed we note that from a dimensional argument,

ay w
G (5h00) = A*Glai, Aay), (5)

where w = I — DL/2. This means that the study of a given subset going to
zero is equivalent to study the A — oo limit on the complementary subset of
invariants.

Under the A-scaling performed in Eq. (4) G becomes a function of X, G()),
and its Mellin transform, M(z) = [ dAA"*"'G()\) may be written in the
form

M(z) =T(-2) /OooiljldaiU?eg (%) (6)

The scaled amplitude G(\) associated to the Feynman graph G may be ob-
tained by the inverse Mellin transform,

o+1i00
GO = % / d=3* M (2), (7)
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where 0 = Re (z) < 0 belongs to the analyticity domain of M(z).

Since the integrand of Eq. (7) vanishes exponentially at o + ico, due to
the behavior of I'(z) at large values of Im z, the integration contour may be
displaced to the right by Cauchy’s theorem, picking up successively the poles
of the integrand, provided we can desingularize the integral in Eq. (6). Such
a problem has been studied by an appropriate choice of local coordinates [11]
and also using Hepp sectors and a multiple Mellin representation [6].

From these works it has been possible to show that M (z) has a meromor-
phic structure of the form

M) = Y )

It results from the displacement of the integration contour in the inverse
Mellin transform, an expansion for small values of A, of the form

Gmax ('I‘L

N )
G = DA Y Angn?(N) + Ry(N), (9)

n=no

where the coefficients A, ({p}) and the powers of logarithms come from the
residues at the poles z = n.
The rest of the expansion Ry () is given by

Rx) = [ :O A2 yr (o)), (10)
with
N <Re(z) < N+1, Re(z)=N+n, 0<n<l1 (11)
and where

Fz) = /OOO ﬁdaiUge% (%) (12)

It is a rather difficult task to perform explicitly the a-integrations in Eq. (6)
above for a general Feynman amplitude. As this calculation will not be nec-
essary for our purposes, we give the appropriate references for the interested
reader [6,7,12,13]. It is shown in these papers that renormalized Feynman
amplitudes can be expressed as finite sums of convergent integrals which are
exactly of the same type as those of convergent diagrams, provided the various
integration variables associated to the remainders of renormalization Taylor
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operators are renamed as supplementary Hepp-sector variables. In the follow-
ing we keep the notations corresponding to convergent graphs, which means
that the results are valid for convergent as well as for renormalized divergent
diagrams.

We have shown the convergence of asymptotic expansions of general Feyn-
man amplitudes in another article [14], obtaining a bound for the remainder
of the expansion. In the particular case of all masses going to zero (infrared
behavior), we have shown that for I — DL/2 > 0 (which is just the condition
for UV convergence for the dimensionally regularized amplitude), the rest of
the asymptotic expansion may be written in the form

[Rv(N)| < KK n({p}) ()Y AT, (13)

where K7 and K are finite constants and p is a finite mass scale. The scaling
parameter A is arbitrarily small in the limit of vanishing masses. Therefore
the factor (Au?)? in the bound above makes the sequence of the remainders
Ry (M) converge to zero as N — oo, which is a condition for the convergence
of the asymptotic expansion.

3 The 2-Point Function Critical Behavior

In another article we have shown [14] that one can obtain a convergent series
from Eq. (9) as N — oo. Let us specify to the limit of all masses going to
zero, and consider for simplicity the case of a single field having mass m.
The analysis below can be generalized without difficulty to the case of several
fields having different masses. We also consider dimensionally regularized
amplitudes, that is, we take the Euclidean space dimension D to be such
that the amplitudes are formally defined as convergent integrals, divergences
appearing later as singularities for some diagrams.

For the 2-point function G(?(p?,m?), the only nonzero invariant of the
type (3, pi)? contributing to the construction of the Symanzik polynomial
V(a) in Eq. (3) is p?. This may be seen if we note that for any diagram
G contributing to the two-point function, the whole set of two-trees in the
definition of V(a) in Eq. (3) divides into two classes, in which the total
external momentum entering one of its connected components is either p?
or zero (named respectively relevant and irrelevant two-trees). In this case,
after introducing a fixed mass scale u, it is easy to see that the inverse Mellin
transform, Eq. (7), may be rewritten in terms of the variable p?/m?. Then
the small mass behavior of a graph G contributing to the two-point function,
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G@ (p?,m?), has the form

ant = 3 (%) S o [ ()]

n=—w p p

We remember that according to Egs. (6) and (7) the expansion above comes
from the inverse Mellin transform,

2 o+ico 2\ ?
a(= :L/ de (£ I'(—2)
P> 20Ty ioo m?2
[ee] 1 4 z
X/o HdaiUfge_’BZiGGO“ <%> , (15)
i=1

where W' = 1?(3;cq ay)U(a), R' (o) = Z;T H;@_T «;, and the notations
E, and H, indicate respectively summation and product over relevant two-
trees.

The coefficients Ay, (1?) in Eq. (14) come from the meromorphic structure
of the Mellin transform displayed in Eq. (8). It is an extremely hard task to
determine explicitly all these coefficients, which is equivalent to completely
desingularize the integral over the a-variables in Eq. (15) respective to z. The
coefficients A, in Ref. [10] and Ref. [6] corresponding to the leading poles of
the Mellin transform have been studied in the case of the behavior of Feynman
amplitudes at large momenta, which is mathematically equivalent to the case
of vanishing masses studied here. We adapt the method used in the above
mentioned works to get an expression for the leading coefficients in the case of
the small mass behavior. In the following we give only the general lines of the
method, the results we have obtained and the definitions of the basic objects.
The calculations are very involved and the full mathematical details in the
case of large momenta behavior are in the above quoted references. These
calculations can be adapted to our case without major difficulties. The main
tool used to perform the analytic continuation of the Mellin transform is the
generalized Taylor operator, a generalization of the operators used in field
theory for the purpose of renormalization. It is defined as follows: given a
function f(x), such that 2" f(x) is infinitely differentiable at z = 0, we define
the generalized Taylor operator 7™ as

e f(x) =a A M f (2], (16)
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where T is the usual Taylor operator, A > —FE’(v) is an integer, E'(v) is the
smallest integer > Re(v) and e = E’(v) — v. For any subdiagram S C G this
corresponds to a generalized Taylor operator defined by

rsf({a}) = [y f({a})lai=e2a; ieslo=1- (17)

A basic quantity associated to the diagram G playing a role in the desingu-
larization procedure has the form

ne e} o

SCG

where the product runs over subdiagrams S of the graph G, including G itself.
Although the 7 operators do not commute, it can be shown that the complete
product [[gca(1 — Té(s) [.]) is independent of the order of application of the
factors upon the function between the brackets, [.] .

The procedure follows along lines parallel as was done in Ref. [10] and in
Ref. [6] for the large momenta behavior. We obtain for the leading coefficients

A, q the expression

1 2k ~ -
Awq =~ Z ﬁgG/Slfsl/Sb”'fSk—l/Sk
q! (S ( q )!
1y Sk}
dk—a-1 _
[W[w—z)m (=) - (19)
Z=—no

In the above equation, w is the Weinberg leading power

w = Supg [w(S)], (20)

where Supy runs over the superficial degree of divergence of all essential
subdiagrams of G, w(S) = L(S)D — 2I(S) and ¢uax(w) = Q — 1, Q being
the number of elements in the largest set of nested leading subdiagrams. The
sum runs over all forests {51, ..., S} of k(> ¢) nested leading subdiagrams
S1 D Se D ... D Sk (we remember that leading subdiagrams are those whose
superficial degree of divergence equals w). The quantities ¢, f , 7 are obtained
from the subdiagrams S C G by the formulas

&= [ Tldoerr S [T {1@2’(5)} vE@), @

Kk ies s'cs
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; dSs

fo=—22 =1 &, (22)

€S
F(—é) 2 2
L = doe ™ Xjes
VSk F(—Z) 2 A Z1;[Sv ;€ J
—21(8’
s'cs i€S

where S; is the diagram obtained from S by inserting a two leg vertex (a mass
insertion ;%) on the line i. Particular cases for the quantities in the above
equations are og/g = 1 and og s = 0 if G itself is leading. The Feynman
amplitude corresponding to S; is simply given by

V(a)

Gs, :/ Hdal % (a)e” 7@, (24)

€S

The various factors in Egs. (19), (22), and (23) can be reorganized to write
the leading coefficients in the more convenient form

f= Y
wg T oy —g—_1)
T (s s (k=a=1)

qul
i || Tawes Seons)| e

i€G

where the function A(«;z) is defined by

T
UG/SIUSI/SQ‘”USk—l/SkUsk

S

Sk

Aw; 2) :I‘( )RG

(Wg, /Us,)?

A wl| T

S1/8S> Sk—1/Sk

, (26)

and where, taking the convention Sy = G, R,G is the operator (the order
—2I(T) is understood for each T operator corresponding to a subdiagram T')

=11 II a-m| JTa-7. (27)
=1

TiCS1—1/5: TCSk
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The operator R,G does not change the homogeneity properties of the functions
upon which it acts. So, remembering the homogeneity properties of the poly-
nomials U and W', and noting that L(G/S1)+ L(S1/S2)+ ...+ L(Sk_1/Sk) +
L(Sk) = L(G), we see from Eq. (26) that A(«;z) is a homogeneous func-
tion in the a-variables of degree L(G)D/2 + k + z/2. Then taking spherical
coordinates in a-space we may write from the preceding equations

1 ok—1 ghal z o 2
Apg = — F(——)/dQ/ do e ()
¢! Z (k—q— 1) dzk—a-1 [ 2 0 ee
{Sl,...,Sk}

S s R (5] (28)

=w

xo

The integral over g in the equation above may be expressed in terms of the I'-
function, and f(Q), g(€; z) are functions of the angular variables 2 depending
on the specific topological characteristics of the graph G considered. We get
for the leading coeflicients A

1 k=1 gkmarl z
Awq: a Z (k_q_]_)!dzk*Q*l |:F <—§>/ng(Q,Z)
{S1,--,Sk}

e e (R R | ICY

In the very neighbourhood of criticality the contribution of the amplitude G
is given by the leading term in the expansion (14) which corresponds to the
highest powers of m?/p? and of —In (m?/p?). This means that for very small
values of m? we have

avrna() [o(E)]

P2
where we remember that w is the Weinberg leading power, given by Eq. (20),
and @ is the number of elements in the largest set of leading subdiagrams of
G. To get the coefficient A, in Eq. (30) from Eq. (29), we note that the sum

has only one term, corresponding to the nest {51, ..., Sg} and a zeroth-order
derivative. We obtain

Ao = %F (-5) g@ar (I - L((;)D +k+ %)

RICLIV

x / d0g(;w) [ £(9)] . (31)
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Now, if G itself is leading it does not contribute to the expansion, since in this
case 95 = 0 for every S C G. If G is not leading, w(G) = L(G)—21(G) < w,
and there exists a § > 0 such that w = L(G)D —21(G)+ 6. The arguments of
the I'-functions in Eq. (31) above are respectively —w/2 = (2I(G) — L(G)D —
0)/2 and § + Q. Since 6 > 0 and @ > 1, singularities in A, come from the
factor I'(—w/2). Thus at fixed space dimension A (for instance A = 3), if the
diagram G has a topological structure such that L(G)A—2I(G)+d = 2n, n an
integer > 0, the corresponding singularity of the I'-function above, I'(—w/2),
should be removed by a renormalization procedure. This may be done, as
usual, taking D = A — ¢, and subtracting the pole at ¢ = 0, leaving some
regular function I'ren(A). The result in space dimension A for the coefficient
A, reads

2Q(G)—1
Auq(G) = eren;G(A)(M2)7[6+Q(GHF(5 +Q(G))
« / 1096 (% w) [fa(©)] B+ (32)

In the above equation we have displayed explicitly the dependence of the
various quantities on the Feynman amplitude G we have considered.

Thus the behavior of the two-point function near criticality is described
by an expression having the form

GP (p*,m?) ~ ;ANQ(G) (%;) e [— In (’Z—;ﬂ v , (33)

where the symbol ° . means summation over the whole set of Feynman
diagrams contributing to the two-point function. The quantities under the
summation symbol can be obtained by explicitly calculating each Feynman
diagram (. This result holds for any scalar field theory without derivative
couplings.
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