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By considering the fixed-dimension perturbative expansion, we discuss the nonan-

alyticity of the renormalization group functions at the fixed point and its conse-
quences for the numerical determination of critical quantities.

1 Introduction

In the last thirty years there has been a significant progress in the under-
standing of critical phenomena. It has been realized that the behavior in
the neighborhood of a critical phase transition, i.e. a transition characterized
by long-range correlations, is determined by very few properties: the space
dimensionality, the range of the interactions, the number of components of
the order parameter, and the symmetry of the Hamiltonian. This means
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that physically different systems may have the same critical behavior. For in-
stance, a simple fluid at the liquid-vapor transition and a uniaxial magnet at
the Curie point behave identically: critical exponents, dimensionless ampli-
tude ratios, and scaling functions are numerically equal. This phenomenon,
which is referred to as universality, has been understood within the Wilson’s
renormalization group (RG) approach. The conceptual setting is thus quite
well established, and the theory of critical phenomena has reached the matu-
rity of well-verified theories like, for instance, QED or the standard model of
weak interactions. Nonetheless, it is important to improve experiments and
theoretical calculations in order to understand the limits of validity of these
theories. In order to test QED and the standard model several experiments
have provided accurate estimates that can be directly compared with the
theoretical predictions. The most classical ones are the experiments on the
g-factor of electrons and muons, and on the Lamb shift in hydrogen. In the
theory of critical phenomena, the superfluid transition in *He plays a very
special role, since it is essentially the only case in which one can determine a
critical exponent with an accuracy of 10~%. This is due to a combination of
extremely favorable conditions: the singularity in the compressibility of the
fluid is particularly weak; it is possible to prepare very pure samples; experi-
ments may be performed in a microgravity environment (for instance on the
Space Shuttle), thereby reducing the gravity-induced broadening of the tran-
sition. A recent experiment [1,2] obtained an extremely accurate estimate®
of the critical exponent of the specific heat, & = —0.01056(38). This result
should be compared with the most precise theoretical estimates: the analy-
sis of high-temperature (HT) expansions gives [3,4] —0.0146(8), —0.0150(17);
Monte Carlo (MC) simulations give [3,5] —0.0148(15), —0.0169(33); the anal-
ysis of the d = 3 perturbative expansion gives —0.0112(21) (variational per-
turbation theory [6 8]) and —0.011(4) (Borel resummation [9]). There is a
clear discrepancy between the most accurate theoretical estimates and the
experimental result. However, in order to understand whether the difference
is truly significant, we must ask the question: Are the quoted errors reliable?
Our experience, looking backward in time, is that there is a natural tendency
to be overconfident in one’s own results, and thus to systematically underes-
timate the errors: As Hagen Kleinert [8] put it, each one has a tendency to

aThe original result reported in Ref. [1] was incorrect. The new estimate is reported in
Ref. [2]. The error which is reported in the text is a private communication of J. Lipa to
the authors of Ref. [3].



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

Nonanalyticity of the Beta-Function and Systematic Errors . . . 415

apply the “principle of maximal optimism”. Clearly, further theoretical and
experimental investigation is needed to settle the problem.

In order to set correct error bars, it is necessary, although clearly not
sufficient, to have a good understanding of the possible sources of systematic
error. In MC and HT works, most of the systematic error is due to the
nonanalytic corrections to scaling. Indeed, in N-vector systems, there are
corrections t2 (t is the reduced temperature) to the leading scaling behavior,
with A &~ 0.5-0.6 in the physically relevant cases 0 < N < 4. In the analysis
of the MC data and of the HT series, these slowly decaying corrections require
careful extrapolations, in the absence of which precise but incorrect results
are obtained. To give an example, we report here some recent results for the
four-point renormalized coupling ¢* in the three-dimensional Ising model (see
the discussion in Sec. 5 of Ref. [10] and Fig. 1 reported there):

MC, no nonanalytic corrections [11]: g* =25.0(5);
MC, with nonanalytic corrections [10]: g* =23.7(2);
HT, no nonanalytic corrections [12]: g* =24.5(2);
HT, with nonanalytic corrections [13,10]:  ¢* = 23.69(10), 23.55(15).

For comparison, perturbative field theory gives g* = 23.64(7) [9], while a
recent analysis of improved HT expansions gives ¢* = 23.49(4) [14]. Clearly,
neglecting the corrections to scaling introduces a large systematic error. And,
even worse, there is no way to evaluate it, unless one assumes that nonanalytic
corrections are really there.

A solution to these problems is represented by the improved models [3—
5,14 18] which are such that the leading scaling correction (approximately)
vanishes. The systematic errors are now sensibly reduced and one obtains
more reliable estimates.

MC and HT analyses, although different in practice, are very similar in
spirit, and indeed they are affected by the same type of systematic errors.
In order to assess the reliability of the results, it is thus important to have a
different approach to compare with. Field theory provides it and indeed inde-
pendent estimates can be obtained by using a variety of different methods: the
e-expansion pioneered by Wilson and Fisher, the fixed-dimension expansion
proposed by Parisi, the perturbative expansion in the minimal-subtraction
scheme without e-expansion proposed by Dohm, and the so-called exact RG
(there are many different versions, see, e.g. Ref. [19]), which essentially con-
sists in approzimately solving nonperturbatively the RG equations.
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Here we will focus on the fixed-dimension expansion method, which is the
one providing the most precise estimates, and, together with the e-expansion,
has been most widely used. We consider the standard ¢*-theory with IN-
vector fields and discuss the role of the singularities of the RG functions at
the critical point in the numerical determination of critical quantities.

2 Singularities of the RG Functions

An important controversial issue [20-24] in the field-theoretic (FT) approach
in fixed dimension is the presence of nonanalyticities at the fixed point g*,
which is defined as the zero of the S-function. The question was clarified
long ago by Nickel [21] who gave a simple argument to show that nonanalytic
terms should in principle be present in the g-function. The same argument
applies also to other series, like those defining the critical exponents: any RG
function is expected to be singular at the fixed point.

To understand the problem, let us consider the four-point renormalized
coupling g as a function of the temperature T. For T" — T, we can write
down an expansion of the form

g=g" [1+a1t+a2t2+...+b1tA+b2t2A+___

fert®t 4 dittr et . (1)

where A, Ao, ... are subleading exponents and t is the reduced temperature
t = (T — T,)/T.. The corrections proportional to t” are due to the presence
of an analytic background in the free energy. On general grounds, we expect
that a1 = az = ag = ... = 0. Indeed, these analytic corrections arise from
the nonlinearity of the scaling fields, and their effect can be eliminated in
the Green’s functions by an appropriate change of variables [25]. For dimen-
sionless RG-invariant quantities such as g, the leading term is universal and
therefore independent of the scaling fields, so that no analytic term can be
generated. Analytic correction factors to the singular correction terms are
generally present, and therefore the constants ¢; in Eq. (1) are expected to
be nonzero.

Starting from Eq. (1) it is easy to compute the -function. Since the mass
gap m scales analogously, we obtain for A < v (this condition is usually, but
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not always, satisfied”) the following expansion:

Dl

Bg) = m 2L = a1Ag + as(Ag)® + ...+ Bi(Ag)E + Ba(Ag)

am +...+

P2

n(ADHE £ 16 (A)F 4.+ GADE +..., (2)

where Ag = g* —g. Tt is easy to verify the well-known fact that oy = —A/v =
—w and that, if a3 = az = ... = 0 in Eq. (1), then 81 = B2 = ... = 0.
Equation (2) clearly shows the presence of several nonanalytic terms with
exponents depending on 1/A; A; /A, and v/A.

As pointed out by Alan Sokal [22,23], the nonanalyticity of the RG func-
tions can also be understood within Wilson’s RG approach. We repeat here
his argument. Consider the Gaussian fixed point which, for 3 < d < 4, has
a two-dimensional unstable manifold M,: the two unstable directions corre-
spond to the interactions ¢ and ¢*. Notice that continuum field theories are
in a one-to-one correspondence with Hamiltonians on M, and that the FT
RG is nothing but Wilson’s RG restricted to M,. But now M, has no spe-
cial status at the nontrivial fixed point. In particular, there is no reason why
it should approach it exactly along the leading irrelevant direction. Barring
miracles, the approach should be along a generic direction, which is tangent
to the leading irrelevant one, but which has nonzero components along any
of the irrelevant directions. If this happens, nonanalytic terms are present in
any RG function.

In order to clarify the issue, Ref. [10] determined the asymptotic behavior
of 3(g) for g — ¢* in the continuum field theory for N — oco and 2 < d < 4,
and showed that Eq. (2) holds and that the expected nonanalytic terms are
indeed present. In Ref. [26] the computation was extended to two dimensions,
finding again nonanalytic terms.

The presence of nonanalyticities gives rise to systematic deviations in FT
estimates, as it did in MC and HT studies. In the next section we will present
a test-case and we will discuss the type of deviations one should expect.

3 A Simple Example

In order to understand the role of the nonanalytic terms in the analyses of the
FT perturbative expansions we consider a simple zero-dimensional example.

bIn some models, for instance in the 2D Ising model, A > v. In this case, Eq. (2) is still
correct [26] if v and A are interchanged and a3 = —v/v.



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

418 M. Caselle, A. Pelissetto, and E. Vicari
0.6 T T T y T
........... 6th
05} ---- 8th ]
—— 10th
0.4} ]
0.3} E
0.2} E
0.1} _ ]
~~~~~~ o \ -

0.0 \
1.000 1.002 1.010

g*

Figure 1. Distribution of the results for the resummations of g* for p = 1/10, ¢ = —Z1/5.

Define

* dx 22 gat

fep=ci-o e [~ aten| S5 -00 @)
—oo V2T

For ¢ # 0 and p not integer, this function has a branch point for ¢ = 1 and

thus it should mimic the behavior we expect for FT expansions. For g — 1,

we have

flgie,p) = Zo— Z1(1 — g) + (1 — g)" P + O((1 — g)?), (4)

where Zy = 1.37556014, 7, = —0.679325. We wish to repeat here the same
steps performed in the calculation of ¢* and w. Therefore, we determine g*
and Z1, by solving the equations:

f(g*;ic.p) = Zo, Z1 = f'(9";¢,p). (5)

Of course, f(g;c,p) is replaced with an appropriate resummation of its pertur-
bative expansion. We use here the resummation scheme proposed in Ref. [27]
that makes explicit use of the location of the Borel-transform singularity, but
similar results are obtained extending the Borel transform by means of Padé
approximants (note that one could also use the perturbative series in the bare
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Figure 2. Distribution of the results for the resummations of Z; for p = 1/10, ¢ = —Z1/5.

coupling [28]). The mean values and errors are determined by using the pro-
cedure of Ref. [29]. In the absence of the nonanalytic term, i.e. for ¢ = 0,
using the nth-order expansion, we obtain

n=6 g¢*=100025(131) Z; = —0.6791(178),
n=8  ¢g*=0.99997(10) Z; = —0.6800(18),
n=10: g¢*=1.00000(1) 7 =—0.6791(2).

There is good agreement, the precision increases by a factor of 10 every two
orders, and the error bars are correct.

The next step is to consider the role of the nonanalytic corrections, by
adding a term that is small compared to the analytic one. We choose ¢ =
7Z1 /5

Now, for p = 1/10 we obtain

n=6: g*=10043(62) Z = —0.550(20),
n=28 g¢*=10066(15) Z5 =—0.550(3),
n=10: g¢*=1.0062(5) 75 = —0.552(2).

In this case the agreement is poor, especially for Z;, and, even worse, the
errors are completely incorrect. This can be understood from Figs. 1 and 2
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where we show the distribution of the approximants that are used. These
distributions are nicely peaked, but unfortunately at an incorrect value of g*
and Z;. Thus, in the presence of these (strong) nonanalyticities, the fact that
the approximants have a narrow distribution is not a good indication that the
results are reliable. Also, the stability of the results with the number of terms
of the series is completely misleading. As we shall discuss below, this is what
we believe is happening in two dimensions.

If we consider instead a weak nonanalyticity, i.e. p &~ 1, the discrepancies
we have found for p = 1/10 are much smaller, although still present. For
instance, for p = 9/10 we have

n==6 g*=1013(45) Z5 = —0.755(270),
n=8 g¢*=1014(7) Z, = —0.655(23),
n =10 g¢g*=1.0064) Z5 =—0.668(2).

In this case the results are consistent with the exact values, although the errors
are still slightly underestimated. As expected, the largest discrepancies are
observed for Z;.

4 Conclusions

We have shown that nonanalytic terms may give rise to systematic deviations
and a systematic underestimate of the error bars. Now, what should we expect
in the interesting two- and three-dimensional cases?

In three dimensions A ~ 0.5 and Ay /A is approximately 2 [30]. Thus, the
leading nonanalytic term has the exponent As/A and is not very different
from an analytic one. As a consequence, we expect small corrections and in-
deed the FT results are in substantial agreement with the estimates obtained
in MC and HT studies. However, small differences are observed for v and w
for N=0and N = 1:

N =0 ~pr =1.1596(20) Ref. [9], e = 1.1575(6) Ref. [31],
N =0 Apr=0478(10) Ref. [9], Anc = 0.517(7) 150 Ref. [32],
N =1 ~pr =12396(13) Ref. [9], yur = 1.2371(4) Ref. [14],
N =1 Apt =0.504(8)  Ref. [9], Aye = 0.533(6) Ref. [33].

There are slight differences, especially for w, but still at the level of a few
error bars. Note that, as discussed in Ref. [10], part of the error may be due
to a slightly incorrect estimate of ¢g*. Using the estimate of ¢g* obtained from
the analysis of the HT expansions, the F'T estimates change towards the HT
and MC values.
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Larger discrepancies are observed in two dimensions. For N > 3 it is easy
to predict the behavior of the RG functions at the critical point. Indeed,
the theory is massive for all temperatures. The critical behavior is controlled
by the zero-temperature Gaussian point and can be studied in perturbation
theory in the corresponding N-vector model. One finds only logarithmic
corrections to the purely Gaussian behavior. It follows that the operators have
dimensions that coincide with their naive (engineering) dimensions, apart
from logarithmic multiplicative corrections related to the so-called anomalous
dimensions. The leading irrelevant operator has dimension two [34,35] and
thus, for m — 0, we expect

g(m):g*{1+cm2 @mﬁ)ﬁuo(%)”, (6)

where ( is an exponent related to the anomalous dimension of the leading
irrelevant operator, and c is a constant. Therefore,

9
ﬁ(g)zm%z?Ag(H@jt---), (7)

with Ag = ¢g* — g. Clearly there are logarithmic corrections in this case
and therefore, we expect large deviations in the determinations of w, which
should be 2. These deviations are indeed observed: for N = 3 the analysis
of the five-loop series [36] yields the estimate 3'(¢g*) = 1.33(2), which is very
different from the expected result 5'(¢*) = 2.

For N = 1, we can repeat Nickel’s analysis, using the fact that, from
conformal field theory, we can compute the RG dimensions of all relevant
and irrelevant operators. Using these results we predict that®

7
Blg) = =89 (1+b2/Ag1 7+ ba| AgP/ T+ balAgT + - ) (8)

where Ag = ¢g* — ¢g. Such an expansion is confirmed by an analysis of the
lattice Ising model. Again we find strong nonanalyticities, and correspond-
ingly we expect large deviations. And, indeed such large deviations are ob-
served: the analysis of the five-loop series gives g* = 15.39(25) [36] and
' (g*) = 1.31(3), to be compared with the exact prediction #'(¢g*) = 7/4 and
the estimates g* = 14.69735(3) in Ref. [37] and ¢g* = 14.6975(1) in Ref. [38].

¢Sometimes it has been claimed that the leading irrelevant operator in the Ising uni-
versality class has w = 4/3, so that 3'(¢*) = 4/3. This claim is incorrect. Indeed, such
an operator can only appear in nonunitary extensions of the Ising model, but not in the
standard (unitary) ¢*-field theory. For a detailed discussion, see Appendix A of Ref. [26].
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