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We show that for warped product space-times the conformal (geometrical mod-
uli) excitations of the internal compactified factor spaces should be observable as
massive scalar fields in the external space-time. These scalar fields (gravitational
excitons) describe weakly interacting particles and can be considered as dark mat-
ter component. On the other hand, they provide possible values for the effective
cosmological constant.

1 Introduction

The multi-dimensionality of our Universe is one of the basic assumptions
in modern theories beyond the SU(3) x SU(2) x U(1) Standard Model of
electroweak and strong interactions. Superstring theory and M-theory use
this concept as basic assumptions and have a consistent formulation in space-
times with total dimension D = 10 and D = 11.

The fundamental constants in these theories are related to the vacuum
expectation values of the dilaton and moduli fields, and variations of these
fields would result in variations of the constants. In the context of standard
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Kaluza-Klein models, the moduli are defined by the shape and size of the
internal spaces (geometrical moduli). Up to now, there are no experiments
which show a time variation of fundamental constants. This means, that ac-
cording to observations, the internal spaces should be static or nearly static at
least from the time of recombination (in some papers, arguments are given in
favor of the assumption that a variation of the fundamental constants is ab-
sent from the time of primordial nucleosynthesis). Therefore, a mechanism for
moduli stabilization should be part of any realistic multi-dimensional model.

Within multi-dimensional cosmological models of the standard Kaluza-
Klein type® such a stabilization is achieved, e.g. via trapping of the geomet-
rical moduli fields by effective potentials of dimensionally reduced models.
On the other hand, it is important to consider possible observable conse-
quences of various stabilization mechanisms. We show that fluctuations of
the multi-dimensional geometry near minima of corresponding effective po-
tentials should be observable as fluctuating scalar fields in our Universe, i.e. as
scalar particles [1].

2 Conformal Fluctuations of Internal Spaces

We consider a cosmological model with the metric
g=90 + 2625"(1)9(1')’ (1)
i=1

which is defined on a manifold with warped product topology
M = My x My x -+- X M, (2)

where x are some coordinates of the Dy = (dg + 1)—dimensional external
space-time manifold My and

9 = g0 (x)da* & dz”. (3)
Let the manifolds M; be d;—dimensional Einstein spaces with metric ¢(¥, i.e.

Ron [g(i)] = )\igfjl)n, m,n=1,...,d;, R [g(i)} = \d; = R;. (4)

2Here, it is assumed that the internal spaces are compactified at sizes somewhere between
the Planck scale Lp; ~ 10733cm and the Fermi scale Ly ~ 10~17cm to make them
unobservable.
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In the case of constant curvature spaces, the parameters \* are normalized as
A\t = k;(d; — 1) with k; = £1,0. Later on, we shall not specify the structure
of the spaces M;. We require only that M; are compact spaces with arbitrary
sign of curvature.

With total dimension D = Dy + >, d;, k3 being a D—dimensional
gravitational constant and A a D—dimensional cosmological constant, we
consider an action functional of the form

S =5 [ o VIal {Rlg) — 24} + S0, )
DIVI

where ), is a non-specified action term which takes into account additional
matter fields. To illustrate the natural origin of gravitational excitons (gravex-
citons for short) we shall consider a pure geometrical model: S, = 0. The
generalization to models with explicit matter-terms is obvious. As an illus-
tration we consider such a term (resulting from the Casimir effect) at the end
of this section.

Let 3} be the scale of compactification of the internal spaces at the present
time. Instead of 3? it is convenient to introduce a shifted quantity: Bl =
Bi - Bi.

Then, after dimensional reduction and conformal transformation

n ~\ Do—2
o = 250 = (H ﬁ) 59 ©
=1

action (5) reads

_ 1
- 2K2

S / AP0 |g<o>\{fz[g<0>]—éijg@)*‘”aﬁiaﬁj—2Ueff}, (7)

Mo

where R; = Rie’mé. Gij = didij + didj/(Dy — 2) is the midisuper-
space metric and k2 := k% /Vp: denotes the Do—dimensional gravitational
constant (Vp/ is the total volume of the internal space). If we take the
TeV scale [2,3] Mrev and the Planck scale Mp; as fundamental ones for
D—dimensional space-time and the 4-dimensional large-scale space-time, re-
spectively: k2 = 8r/M2:P" | and k3 = 87/M2,, then we reproduce the
well-known relation [2,3]: M3, = VD/Mézef,D/) . This implies that the scale
of the internal space compactification is fixed and of the order

a~ VP 103/ e, (8)
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The effective potential in (7) reads

. toa) I~ - 5
Ueff[ﬂ] = (H edlﬁ ) li ZRZ‘E_Z’B + A
=1 =1

With the help of a regular coordinate transformation ¢ = QB, B= Q Lo,
the midisuperspace metric (target space metric) G' can be transformed to a
pure Euclidean form: Gidei Qdf = oijdp' @dp? =31 dpt @dpt, o=
diag (+1,+1,...,+1) (see e.g. Ref. [1]).

It is clear that a stabilization of the internal spaces can be achieved, if
the effective potential U.g has a minimum with respect to fields 3 (or fields
©"). In general, it is possible that the potential U.g has more than one
extremum. But it can be easily seen that, for the pure geometrical model
under consideration, we can get one extremum only. This corresponds to
ﬁi = 0. For the masses of the normal mode excitations of the internal spaces
(gravitational excitons) around the minimum position we obtain:

2
Do—2

(9)

4\ g Rk
o=l =—— = 2" >0 10
mji mi D2 7 >0, (10)
where
Aesi == Uest| (11)

fi=0

plays the role of an effective cosmological constant in the external space-
time. These equations show that a global minimum can only exist for our
specific model in the case of compact internal spaces with negative curvature
R <0 (k=1,...,n). The effective cosmological constant is also negative:
Aegr < 0. Models which include matter can have minima for internal spaces
of positive curvature. Usually, the effective cosmological constant is positive
in this case.

For small fluctuations of the normal modes in the vicinity of the minima
of the effective potential action Eq. (7) reads

o= [l o]
Mo
_%/dDox /|§(0)|{ Y (g(o)w fuwfqum?z/;%i)} (12)

Mo i=1
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(for convenience we use here the normalizations: k, 13 B) Thus, confor-
mal excitations of the metric of the internal spaces behave as massive scalar
fields developing on the background of the external space-time. In analogy
to excitons in solid state physics, where they are excitations of the electronic
subsystem of a crystal, we called the excitations of the subsystem of inter-
nal spaces gravitational excitons [1]. Later these particles have also become
known as radions [2,3].
From Eq. (10) follows that

|Aegt| ~ m37 ~ a(oﬁi , (13)

where a(g); = exp 3§ are the scale factors of the stabilized internal spaces.

The calculations above were performed for a model with the TeV scale
Mrtev as fundamental scale of the D—dimensional theory (see Eq. (8)).
Clearly, it is also possible to choose the Planck scale as the fundamental
scale.

For this purpose we do not fix the compactification scale of the internal
spaces at the present time. We consider them as free model parameters
and demand only that Lp; < a(); = e < Ly ~ 10cm. So, we shall

not transform (' to . In this case, k2, ~ MFTI(HD/), so that the Planck
scale becomes the fundamental scale of the D—dimensional theory. In this
approach, Egs. (6), (7), and (9) preserve their form with the only substitutions
$ — B and R; — R;. The Einstein frame metrics of the external space-time
in both approaches are equivalent to each other up to a numerical prefactor:

~(0) _ Uofz/(DO*z) g((]) (14)

g
mY | Tev mlpp?

where vy = [[;; exp (d1/5;). Obviously, the same rescaling takes place for
the squared masses of the gravitational excitons and the effective cosmological
constant: m? —s (v9)” P m2 and Aeg — (v0) 7 P°"? Acg. Thus, in
the latter approach we get, instead of (13), the relation:

—(D-2)
)

|Aeff\ ~ m? ~ (a([])i ) (15)

where we set Dy = 4. This relation shows that, due to the power (2 — D), the
effective cosmological constant and the masses of the gravitational excitons
can be very far from Planckian values even for scales of compactification of
the internal spaces close to the Planck length.



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

726 U. Giinther and A. Zhuk

Let us return to the comparison of the TeV scale and the Planck scale
approaches. If we set, e.g. 6 < D < oo in the TeV-scale approach, then the
internal space scale factors, the gravexciton masses and the effective cosmolog-
ical constant run correspondingly as: 10~ 'cm < aggy < 10~Y7cm,  107%eV
< m; < 1TeV and 107%*Ap; < |Aeg| < 10732Ap;. For this approach, the
internal space scale factors are defined by Eq. (8) due to the demand that
the D—dimensional gravitational constant is of order of the TeV scale. In
the Planck scale approach such a condition is absent and the scale factors
a(o); are free parameters. Let us take, e.g. a(); ~ 107'® cm. Then, in the
Planck scale approach for 6 < D < 10, the gravexciton masses and effective
cosmological constant run correspondingly as 107 2eV < m; < 10~22eV and
107%0Ap; < [Aer| < 107120Ap).

These estimates show that, within the TeV scale approach, the effective
cosmological constant is much greater than the present day observable limit
A < 107122Ap; ~ 10757ecm 2 (for our model |Aett | ey > 102 cm~2), whereas
in the Planck scale approach we can satisfy this limit even for very small
compactification scales. For example, if we require |Aeg| ~ 107122Ap; in
accordance with observations, then Eq. (15) gives a compactification scale
agpyr ~ 10"22/(P=2) L. Thus, ayr ~ 10 Lp; ~ 1078cm for D = 10
and agyr ~ 105Lp; ~ 10~28¢m for D = 26, which does not contradict ob-
servations because, for this approach, the scales of compactification should
be a@y < 10 'cm. Assuming an estimate Aeg ~ 107122Lp;, we auto-
matically get from Eq. (15) the value of the gravitational exciton mass:
mi1 ~ 10761 Mp, ~ 10733eV ~ 107 %6g, i.e. the gravexcitons are in this case
extremely light particles. Nevertheless, such light particles are not in con-
tradiction with the observable Universe, because they do not overclose the
Universe [4].

As shown above, the effective cosmological constant is negative in the pure
geometrical case. However, according to the modern observation Agg > 0.
This problem can be solved if we take into account matter fields. In many
important cases matter can be described phenomenologically via a perfect
fluid ansatz. In this case the effective potential reads [1]

n 7D02—2 n
~ A 1 Y-
el = (Hem> [_izRie P A+wbpl, (16)
=1

i=1

where p is the energy density of the perfect fluid. A number of effective po-
tentials of this type ensuring stability were described in Refs. [1,4-6]. Among
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them, the Casimir potential is one of the most important [5]. The Casimir
effect is connected with the vacuum polarization of quantized fields due to the
non-trivial topology of the background space or the presence of boundaries
in the space. As a result, one obtains a nonvanishing energy density of the
quantized fields in the vacuum state. In our case, this phenomenon should
take place due to the compactness of the internal spaces. For one compact in-
ternal space (n = 1) with compactification scale a; < ag, the Casimir energy
density reads

p=Cexp(—Dp') =Cexp(—DS). (17)

Here C' is a constant which strongly depends on the topology of the model.
The equations of state in the external and internal spaces read, respec-
tively [7]:

Dy

Po=—p, P1=—0p. (18)

di
It can easily be seen that the effective potential (16) with the Casimir en-
ergy density (17) can have a non-negative minimum (non-negative effective
cosmological constant) [5].

Conclusion

From the geometrical point of view it is clear that gravitational excitons are
an inevitable consequence of the existence of extra dimensions. For any the-
ory with compactified internal spaces, conformal excitations (fluctuations)
of the internal space metric will result in gravitational excitons in the ex-
ternal space-time. The form of the effective potential as well as masses of
gravitational excitons and the value of the effective cosmological constant are
strongly model dependent. Gravexcitons may play an important role in cos-
mology. On the one hand, they are connected with the observed cosmological
constant via the effective potential. On the other hand, the interaction be-
tween gravexcitons and usual matter is Planck-scale suppressed and they can
give a significant contribution to Dark Matter [8].
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