
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

Recent Developments in Computer Simulation Studies in Condensed Matter Physics

IOP Conf. Series: Journal of Physics: Conf. Series 1252 (2019) 012007

IOP Publishing

doi:10.1088/1742-6596/1252/1/012007

1

Thermodynamic analysis of semiflexible helical

polymers

Matthew J. Williams

E-mail: mjw532@uga.edu

Institute of Engineering, Murray State University, Murray, KY 42071, USA

Michael Bachmann

E-mail: bachmann@smsyslab.org

Soft Matter Systems Research Group, Center for Simulational Physics, The University of
Georgia, Athens, GA 30602, USA

Abstract. Tertiary structure formation underlies the folding mechanics of many classes of
polymers. A simplified model of helical polymers is a useful system in which to begin studying
the formation and properties of compact conformations known from biomolecules. Hyper-phase
diagrams and structural transitions are presented for polymers of length 40 and 50 over an array
of model parameters.

1. Introduction
In biological polymers, helical structures are a result of hydrogen bonding along the polymer
backbone or by an ordering principle such as many-body constraints [1, 2, 3]. Similar
structures can be simulated in generic homopolymer systems by using a carefully chosen model
[4, 5, 6, 7]. In these decidedly finite systems, structural changes are not phase transitions in
the strict thermodynamic sense [8, 9]. However, biologically relevant macromolecules operate
on mesoscopic scales and the finite-size effects are interesting and should be considered in the
thermodynamic interpretation of structural transitions [10]. To understand helical polymer
systems we analyze the transitions in temperature and model parameter space, the folding
dynamics and stability, and conformation geometry [11, 12, 13]. For this purpose, extensive
parallel-tempering Monte Carlo Simulation were performed.

2. Model
For the study of helical homopolymers we include in our model four essential effective potentials.
Interaction between bonded monomers separated by a distance r is described by the FENE
potential, vbond(r) = log{1− [(r− r0)/R]2}. The minimum of this potential occurs at a distance
r0 = 1 and R = (3/7)r0 represents half of the width of the well. The Lennard-Jones potential
describes the interaction between any two non-bonded monomers separated by a distance of r.
This potential is given by the expression vLJ(r) = 4[(σ/r)12 − (σ/r)6]− vc, where σ = 2−1/6r0.
The computational efficiency can be greatly increased with no appreciable influence on structure
formation by considering all non-bonded interactions of distance r > rc = 2.5σ to have no energy
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contribution. To avoid a discontinuity in the potential we include a shift in the Lennard-Jones
energy of vc = 4[(σ/rc)

12 − (σ/rc)
6].

Helical order is provided by a torsion potential which provides an energy penalty for any
torsion angle τ , which differs from reference angle τ0 = 0.873 radians: vtor(τ) = 1− cos(τ − τ0).
Helical segments are provided stability by inclusion of a bending potential which penalizes
bending angles θ deviating from a reference bending angle θ0 = 1.742 radians. The bending
potential is vbend(θ) = 1− cos(θ − θ0).

These four potentials are each scaled by a pre-factor which determines their relative strength.
Thus, the total energy of a polymer confirmation X = (x1,x2, ...,xN ) is given by

E(X) = SLJ

∑
i>j+1

vLJ(rij) + Sbond

∑
i

vbond(ri i+1) + Sθ
∑
k

vbend(θk) + Sτ
∑
l

vtor(τl). (1)

The energy scales used in this study are SLJ = 1, Sbond = −KR2/2 where K = (98/5) and r2
0

and R = (3/7)r0, Sθ = 200. The torsion strength Sτ is varied to achieve different helix bundling.
In this study, we focus on polymer chains with N = 40 and 50 monomers.

3. Simulation
To simulate these systems we executed a 32-thread parallel tempering simulation with
temperatures between T = 0.03 and 2.5. Each thread performed 400 updates per attempted
thread exchange. Two update types were used in these simulations. Most updates were
displacement updates.

For each displacement update, a random monomer is chosen and a new location is proposed
for that monomer inside of a box of side length rd surrounding its original location. The change

Figure 1. The parameter space under which different structure types are formed for
polymers with N = 40 (a) and N = 50 (b). Dashed lines represent Sτ values which
will be explored further in the rest of the paper.
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in energy of the polymer, ∆E, is calculated, and the move is accepted with probability

Paccept =

{
e−βi ∆E , if ∆E > 0

1, otherwise,
(2)

where βi is the inverse temperature in the i-th thread. The size of the box has a not insignificant
impact on the efficiency of the simulation and is chosen in such a way as to cause displacement
updates to be accepted approximately half of the time.

For every 3N displacement updates a torsion update is attempted. To perform a torsion
update, a random bond and a random rotation angle is chosen. Every monomer following the
bond is rotated by the chosen angle. This changes one torsion angle without changing any other
aspects of the structure. This move is also accepted or rejected according to the criterion given
in Eq. 2.

For each exchange, simulation threads attempt to trade replicas with neighboring threads.
Exchanges are accepted with probability Paccept = min(1, e−(βi−βj)(Ej−Ei)) [14, 15, 16].

4. Hyperphase diagrams
Simulations are preformed for Sτ varying between 0 and 30 for polymers of length N = 40
and Sτ between 0 and 50 for polymers of length N = 50. From the results of each simulation,
structural transitions are found by observing the average energy 〈E〉 and the specific heat Cv
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Figure 2. Energy, specific heat, and q2 as functions of temperature for the 40-mer with Sτ = 26
is given on the left and the same parameters for N = 50 and Sτ = 40 is given on the right.
In both cases a single transition between the single-helix phase and the random-coil phase is
clearly seen in the specific heat plot. For both the single helix and random coil, there is very little
interaction between monomers which are separated by more than 6 bonds and q2 is therefore
nearly 0 in both cases. The vertical line in each panel represents the temperature at which the
structural transition occurs.
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Figure 3. Energy, specific heat, and q2 as functions of temperature for the 40-mer with Sτ = 22
is given on the left and the same parameters for N = 50 and Sτ = 30 is given on the right. In
both cases the high-temperature phase is governed by random coils. As temperature decreases,
both systems show a broad transition peak representing the transition from random coils into the
single-helix phase and then a sharper peak in Cv corresponding to the transition from single helix
to two-helix bundles. The two-helix bundle phase is apparent in the q2 parameter because once
the polymer is folded the magnitude of the interaction between monomers separated by more
than 6 bonds increases drastically. The vertical lines in each panel represent the temperatures
at which the structural transition occurs.

as functions of the temperature of the system. An additional structure parameter q2 is found
to be useful in distinguishing various bundling configurations. This parameter is defined as the
average over all monomers of their LJ interaction with all other monomers separated from them
by more than 6 bonds. This parameter can be calculated from the equation

q2(X) = ε
1

N

N−2∑
i=1

N∑
j=i+2

Θj−i,7 vLJ(rij), (3)

where Θk,` = 1 if k ≥ ` and 0 otherwise.
From these simulations we find that various different structure types are formed. At

high temperature, structures lack order and are considered to be in the random-coil phase.
Confirmations often transition into liquid phases as they cool. At low temperature, polymers
form more organized global structures made up of helical segments. These include single helices,
two-helix bundles, and three-helix bundles. If insufficient torsion potential is provided, polymers
cease to form helical segments and instead form amorphous solid structures. The conditions
under which each of these structure types is formed is provided by the hyperphase diagram
shown in Fig. 1.

For specific example values of Sτ we will provide further data supporting the choice of
transition temperature.
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Figure 4. Energy, specific heat, and q2 as functions of temperature for the 40-mer with Sτ = 14
is given on the left and the same parameters for N = 50 and Sτ = 14 is given on the right. In
both cases the high-temperature phase is random coil and at low temperatures the two-helix
bundles dominate. There is a single transition occurring between the two phases which is visible
in both the specific heat and q2.

4.1. Random coil - single helix transitions
For large values of Sτ polymers tend to form single helices at low temperature and random
coil structures at higher temperature with one obvious structural transition in between. In the
N = 40 polymer, this occurs for values at or above Sτ = 26. At this threshold value, the
transition is found at about T = 0.56. Similar behavior is observed for the N = 50 polymer at
Sτ = 40 with the transition temperature at a slightly lower value of T = 0.48. For both N = 40
and N = 50 the transition between single helix and random-coil phase can be clearly seen in
Fig. 2.

If Sτ is increased further, no new structure types occur, but the transition temperature
decreases.

4.2. Random coil - single helix - two-helix bundle transitions
There are values of Sτ for which both two-helix bundles and single helices occur: 18 < Sτ < 26
for N = 40 and 29 < Sτ < 40 for N = 50. In this domain, the two-helix bundle is dominant at a
lower temperature than the single helix. The transition between the single helix and random-coil
phase occurs in much the same way as the previous example but at lower temperatures, a new
sharper transition appears in the specific heat curves as seen in Fig. 3. This new transition
corresponds to the transition between single-helix structures and two-helix bundles.

The q2 parameter becomes very useful in distinguishing between the structure types. When
a long single helix is folded in half, new contacts are formed between monomers separated by
more than 6 bonds and q2 decreases.
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4.3. Random coil - two-helix bundle transitions
At values of Sτ < 18 for N = 40 and Sτ < 29 for N = 50, there is no longer any temperature for
which single-helix phases dominate. We see only a single strong transition between the two-helix
phase and the random-coil phase in this regime. For both N = 40 and N = 50 we present data
at Sτ = 14 in Fig. 4. It is unsurprising that the transition occurs at a higher temperature for
the polymer of length 50. For the longer polymer, the energetic benefit to folding is also larger.

4.4. Three-helix bundle boundary
In the N = 50 system at Sτ = 12 we are on the boundary between two-helix bundles and
three-helix bundles at low temperature. The energy, specific heat, and q2 are given as functions
of temperature in Fig. 5. Here, there is an obvious transition between the random-coil phase
and the two-helix bundle phase at T = 0.8 and an additional low temperature transition from
two-helix bundle to three-helix bundles at T = 0.1. The three phases are very nicely discernible
in the q2 plot. In the random-coil phase, q2 is approximately 0. Below the two-helix transition
point, q2 stair steps down to a plateau at approximately -1.5. There is an additional stair step
at the three-helix bundle transition to a value of approximately -2.75.

4.5. Structure formation for low Sτ
For both polymer lengths at Sτ = 8, we see helix bundles at low temperature and random-coil
phase at high temperature. Both systems show an intermediate liquid phase between the two.
For the shorter N = 40 polymer the low temperature phase is a very clear, stable, two-helix
bundle phase much like at Sτ = 14. For the longer polymer (N = 50), the low-temperature
phase is the three-helix bundle. It is apparent in Fig. 6 (b), that there is an additional solid-solid
like transition at a temperature of approximately T = 0.12. The structures on either side of this
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Figure 5. Energy, specific heat,
and q2 across temperature for N =
50 and Sτ = 12. Here we are
on the boundary between forming
two-helix bundles if Sτ were larger
and three-helix bundles if Sτ were
smaller. In the specific heat curve
there are two apparent structural
transitions, one at T = 0.8 and
the other at T = 0.1. The
pronounced transition signal at
T = 0.8 is associated with the
transition between the random-coil
phase and the two-helix phase.
At very low temperature, another
transition occurs, this time from
two-helix bundles to three-helix
bundles.
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Figure 6. Average energy, specific heat, and q2 as functions of temperature for Sτ = 8 in
polymers of 40 (left) and 50 (right) monomers. For both polymer lengths we find a random-
coil phase at high temperatures and helix bundles at low temperature with a liquid phase in
between. At length 40, the low temperature phase consists of two-helix bundles and for polymers
of length 50 the low temperature phase dominated by three-helix bundles. Interestingly, in the
N = 50 system specific heat plot there is a very clear transition deep within the three-helix
bundle phase. This is a transition between two very similar three-helix bundle structure types
with no discernibility in q2.

transition are both very clearly 3-helix bundles with no visible distinction between the two.

5. Conclusion
Plots of canonical averages of energy, specific heat, and q2 parameter can be useful in
distinguishing phase transitions in coarse-grained models for helical homopolymers. These phase
transitions can then be used to generate a hyper-phase diagram showing regions model space
in which different structure types form. In this paper, we presented hyper-phase diagrams for
polymers of length N = 40 and N = 50 across the torsion parameter Sτ and temperature T .
We then choose several example values for Sτ for which to present the underlying canonical
data for the structures energies, specific heats, and helix bundle parameter q2. It is apparent
that transitions in the canonical data often correspond to qualitative changes in structure type.
Depending on the specific parameter choices, these quantities allow for the discrimination of
three-helix bundles, two-helix bundles, single helices, amorphous structures, liquid, and random
coil phases.
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