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Abstract
We investigate the loss landscape and backpropagation dynamics of con-
vergence for the simplest possible artificial neural network representing the
logical exclusive-OR gate. Cross-sections of the loss landscape in the nine-
dimensional parameter space are found to exhibit distinct features, which help
understand why backpropagation efficiently achieves convergence toward zero
loss, whereas values of weights and biases keep drifting. Differences in shapes
of cross-sections obtained by nonrandomized and randomized batches are dis-
cussed. In reference to statistical physics we introduce the microcanonical
entropy as a unique quantity that allows to characterize the phase behavior of
the network. Learning in neural networks can thus be thought of as an anneal-
ing process that experiences the analogue of phase transitions known from
thermodynamic systems. It also reveals how the loss landscape simplifies as
more hidden neurons are added to the network, eliminating entropic barriers
caused by finite-size effects.
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1. Introduction

Formore than half a century, it has been believed that an artificial intelligence can be developed
to simulate the astonishing cognition, reasoning, and memory capabilities of the human brain.
The network of a large number of neural cells connected through synapses apparently enables
complex thinking and problem solving by processing input and generating distinct output sig-
nals. Cascades of electric activation pulses from neuron to neuron mediate the learning and
memorizing of signal patterns that accomplish the process of decision making.

In simple artificial neural networks, the electric activations signals are replaced by a large
matrix of weights and biases that serve as input variables for a nonlinear activation function
at each neuron. Basic networks are composed of a layer of input neurons, potentially multiple
layers of hidden neurons to create neural capacity, and a layer of output neurons. Learning
is achieved by an efficient recursive method called backpropagation [1–4]. Besides explicit
mathematical calculation and computational logical algorithms, artificial neural networks can
be considered an additional class of problem-solving strategies [5].

Early attempts to employ artificial neural networks date back to the late 1950s. The first such
network was the perceptron, which consisted of input and output neurons only [6]. Although
the potential of neural networks was recognized early, the perceptron was too simple [7, 8].
The fact that it could not be used to represent the logical exclusive-OR (XOR) gate is believed
to have caused the ‘first AI winter’ at the end of the 1960s. Even though significantly improved
computational and image processing equipment and algorithmic advances lead to a renewed
interest through the 1980s, actual useful applications did not develop beyond so-called expert
machines capable of only solving very specific problems. Only when the global internet made
computational networking possible at a large scale, leading to the creation and storage of vast
amount of data, the pressing need of processing these data forced a breakthrough in the further
development of artificial intelligence in the 2010s. The large networks necessary to process
these data are trained in a process called deep learning, which, however, is still based on back-
propagation. A large variety of neural network architectures have been proposed to accelerate
the learning process [5, 9].

Studies of the Hopfield model [10] were among the first to show the deep relationship of
complexity in neural networks and disordered magnetic systems. This triggered substantial
interest in the statistical physics community and culminated in a vast literature on the subject
in past decades. Most studies focused on understanding the many factors that can impede the
performance of the optimization or learning process, though. Limiting factors are not only
the architecture of the network and the optimization strategy themselves [9, 11], but also the
choice of initial conditions, input data formats, and batching.

Lesser effort has been dedicated thus far to the understanding of the geometry of the under-
lying state space and features of the energy or loss landscape and its generalization by means
of the density of states. The latter notoriously defies analytic treatment and, therefore, only
recently found increasing attention in computational studies of phase transitions in finite sys-
tems. These approaches have been proven useful in applications to problems in statistical phys-
ics [12, 13].

To further advance our understanding of the complex nature of neural networks, we also
establish the relationship between the two driving forces of phase transitions, energy and
entropy, and determine the microcanonical entropy. Inflection points in the entropy curve have
been found to be reliable indicators for phase transitions [14], even in finite systems such as
biomolecules [15].
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In order to make artificial intelligence a safe assistant of humanity, it is necessary to deeply
understand how artificial neural networks learn and work. Given that modern complex net-
works often comprise billions of neurons, it is impossible to track the learning process and
function in all detail. Therefore, in this paper, we take the opposite approach and study one
of the smallest possible meaningful networks that is capable of solving the XOR problem.
Besides the two input neurons and the single output neuron, only one additional layer of two
hidden neurons is needed. Effectively, there are nine parameters to be tuned. The simplicity
enables us to perform an excessive number of tests and measurements incomprehensible for
large networks.

Yet, the learning procedures and therefore the convergence processes are similar and should
give us general insights into the actual working of an artificial neural network. Particular
emphasis is dedicated to features of the loss landscape embedded into the high-dimensional
parameter space. Visualizing cross-sections through the landscape yields valuable insights that
may help improve the performance of the parameter optimization approach. Loss landscapes
are comparable to effective potential-energy and free-energy landscapes in the spaces of relev-
ant degrees of freedom or order parameters in physical systems [16]. Consequently, different
approaches to the parameterization and study of the complexity of loss landscapes have been
followed [17–20], with the purpose of better understanding the influence of the landscape
shape upon the dynamics of optimization processes. In this study, we pursue a more straight-
forward approach and investigate features of the loss landscape impacting the dynamics of
backpropagation convergence, which turns out to be surprisingly complex.

The paper is organized as follows. In section 2, we introduce the neural network and XOR
logic studied and review the optimization by backpropagation. The results we obtained from
the analysis of the convergence dynamics, the features of the loss landscape, as well as the
discussion of the microcanonical entropies for networks with different numbers of hidden
neurons, are presented in section 3. The summary in section 4 concludes the paper.

2. XOR neural network model and optimization

In this study, we employ a simple artificial neural network to solve the XOR problem. The bin-
ary inputs x1 and x2 and the output y for all four cases are listed in table 1. It is straightforward
to modify this basic gate for any other logical behavior, or to add complexity, for example
by simultaneously considering multiple outputs for different logical operations. However, in
order to be able to thoroughly analyze the optimization of the network in detail, we keep it as
simple as possible.

Since the perceptron, even with a single hidden neuron added, is known to lack capacity
to memorize the four cases [8], we add more neurons to the hidden layer. Throughout the
paper, we denote the number of hidden neurons by nh. The simplest network we study here
now consists of two neurons in the input layer, two neurons in the single hidden layer (nh = 2),
and the output neuron (see figure 1). In total, the fully connected network has six links with a
weight parameter attached to each. Hidden and output neurons are assigned a bias parameter.
Thus, the optimization problem to find an approximate solution that mimics the truth table
in table 1 is nine-dimensional. For comparison, larger networks with up to nh = 18 hidden
neurons have been studied as well.

We denote the weight associated with the link that connects the jth neuron in the (l− 1)th
layer with the ith neuron in layer l by w(l)

ij , which can be considered an element of the weight

matrix W(l). For the input layer, we set l= 0. In our simple network, l= 1 is the hidden layer
and l= 2 the output layer. The bias assigned to the ith neuron in layer l is symbolized by b(l)i .
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Table 1. Truth table of the XOR logic.

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

It is useful to also introduce the auxiliary vector

z(l) =W(l)a(l−1) +b(l) (1)

with elements

z(l)i =

n(l−1)
i∑
j=1

w(l)
ij a

(l−1)
j + b(l)i , (2)

where n(l−1)
i is the number of neurons in the previous layer linked to neuron j in layer l. The

variable a(l)i represents the activation value of the jth neuron in layer l. To determine the activ-
ation, we employ the sigmoid function

a(l)i = σ
(
z(l)i

)
, l> 0, (3)

where σ(z) = 1/(1+ e−z). For the input neurons, a(0)i ≡ xi. The sole purpose of introducing
the activation function is to break the linearity in equation (2). Hence, other choices than σ(z)
are also popular, foremost the simpler rectified linear unit (ReLU) function, which is mostly
used in very large networks for its computational efficiency. However, for our purpose, the
sigmoid function is ideal, because the range of output values in the interval (0, 1) suits binary
problems well and, more importantly, the gradients to be calculated in the optimization process
are well-behaved and easy to control, at least in small networks like ours. As it turns out, the
sigmoid approach is more robust and requires far less fine-tuning of control parameters such
as the learning rate in the optimization process than ReLU.

Figure 1. Parametrization of the simplest artificial neural network used in this study
with only nh = 2 neurons in the hidden layer.
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Since the optimal values of the weights and biases are not known in the beginning, we set
them to random values initially. Then, for a given case from table 1 the activations for each
neuron are calculated in the forward pass according to equation (3) from the input to the output
side of the network. According to our setup, which does not contain a data post-processor at
the output, the calculated output is simply ŷ= a(2)1 .

Consequently, one learning step at given values for weights and biases containsM forward
passes yielding outputs ŷm, m= 1, . . . ,M. For our problem, a full batch consists of a set of
M= 4 cases as this is the dimension of the input data set given in table 1. The batch can either
be composed by the complete, nonrandomized sequence of all cases listed in the truth table, or
the four cases are randomly chosen from the list (therefore, a case may occur more than once
in a randomized batch). Both approaches were compared in our study. As the total number of
cases is very small, the introduction of mini-batches is not useful here.

As a measure for the overall deviation of the calculated outputs from the true ones in the
batch, we introduce the total loss function

L=
1
M

M∑
m=1

Lm, (4)

where

Lm = (ŷm− ym)
2 (5)

is the contribution to the loss from the mth case in the batch. The network performs as desired
if the total loss is sufficiently close to zero.

As the complexity of neural networks prevents any analytic approach at finding the optimal
weight and bias values, it is common to use a recursive approximation scheme called back-
propagation [1–4]. Given that L inherently depends on all parameters, any deviation of L from
zero can be traced back to deviations of weights and biases from their optimal values. Hence,
following the negative gradient of L in the space of these variables and adjusting their values
accordingly should help reduce the loss in subsequent learning steps. In order to control the
rate of change, it is useful to introduce the learning rate η. If we use v as a generic vector,
whose components vk are all weights or biases in the nine-dimensional parameter space rep-
resented by our network, then backpropagation updates the vector v from recursion (or epoch)
τ to τ + 1 according to

v(τ+1) = v(τ) − η
1
M

M∑
m=1

∇vLm

(
v(τ)

)
, (6)

where over the gradients, obtained from the individual cases in the batch, is averaged.
Alternative methods to optimize the network have been introduced. One such approach

is zero-temperature Monte Carlo sampling [21], where the parameter values are updated ran-
domly. If the random update of parameters leads to a lower loss, the modified parameter values
are kept. Otherwise, they are reset to the values prior to the update. Currently among the most
popular optimization algorithms, the Adam optimizer [22] significantly improves convergence
dynamics by adaptively changing learning rates for individual parameters. We have used these
methods to compare with our results obtained by standard gradient descent for the conver-
gence dynamics. Since we concentrate here on the exploration of the geometric properties of
the state space, optimizing the performance was not in the focus of this study, though.

For the estimation of the microcanonical entropy, we employed Monte Carlo sampling
methods. Simple sampling, i.e. identifying states by randomly sampling the parameter
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space turned out to be sufficient, but results were confirmed by means of a generalized-
ensemble importance-sampling method. For this purpose, we combined the Wang–Landau
algorithm [23, 24] with multicanonical sampling [16, 25, 26].

3. Optimization characteristics of the XOR network and loss landscape

3.1. Dependence of network performance on the learning rate

We convinced ourselves by performing multiple long runs that the perceptron with a single
hidden neuron cannot solve the problem. It does not have the necessary capacity to store the
memory for all cases. The non-existence of a solution will eventually be evident from the ana-
lysis of the microcanonical entropy later. However, the addition of another hidden neuron to
the neural network as shown in figure 1 (nh = 2) is already sufficient, although the optimiz-
ation process still requires a large number of epochs. Figure 2 shows the convergence of the
loss function for this small network toward zero for multiple learning rates η. For compar-
ison, the loss curve for a network with nh = 18 neurons in the hidden layer and learning rate
η= 0.1 is shown as well. Weights and biases were initialized at random values, vk = 0.1rk
(k= 1, . . . ,9), where rk ∈ [0,1) is a random number drawn from a uniform distribution. The
fluctuations are a consequence of the randomly chosen members of the batch. If the back-
propagation recursions had been performed with nonrandomized batches, the curves would
be smooth. As expected, the choice of the learning rate has a significant influence on the
optimization dynamics. However, convergence can only be achieved within a certain range
of values. For this example, in extensive tests with up to five million epochs, we found the
interval of convergence to be η ∈ [0.002,17.484]. For the following discussion of the optim-
ization characteristics, we employ the results obtained for η= 0.1. Convergence sets in after
about 70000 epochs. In the initial phase, the loss fluctuates about 0.25 and it seems surprising
that it takes several ten thousand more epochs to complete the learning process for all cases.
However, the shape of the loss landscape to be discussed later will provide essential clues.

The double-logarithmic plots in figure 2 offer a few particularly remarkable insights into the
optimization process. Threemajor distinct phases of the optimization process can be identified.
First there is the initial phase, where the loss fluctuates about 0.25. This value depends on the
inital parameter settings. Then there is a sudden drop into the attraction basin. In this period, the
learning rate has the expected impact on the convergence dynamics. Topographically, larger
learning rates make the optimization algorithm traverse the softly sloped terrain toward the
basin of attraction faster. Eventually, the optimization process slows down significantly. It
enters the long-term era governed by the power law

L(τ)∼ τ−γ (7)

with the exponent γ. For the smallest network with two hidden neurons, γ≈ 1.0, whereas its
value increases to about 1.2 for the largest network studied (nh = 18). Remarkably, γ does not
seem to depend on the learning rate, but only on the number of hidden neurons. By comparing
the networks with 2 and 18 hidden neurons at the learning rate η= 0.1, it is noteworthy that the
larger network converges faster only in the long-term phase because of the larger exponent.

The optimal parameter values found with the above initialization and learning rates η= 0.1
for the network with nh = 2 are listed in table 2 as solution #1. This particular optimal para-
meter set serves as the basis for the subsequent discussion. The other examples of optimal
sets of parameter values were obtained in zero-temperature Monte Carlo runs. The selection
in table 2 is not expected to be complete; other solutions exist. In fact, as we will see later,
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Table 2. Examples of sets of optimal parameter values for the XOR network and sigmoid activation.[
w(1)
11

]
opt

[
w(1)
12

]
opt

[
w(1)
21

]
opt

[
w(1)
22

]
opt

[
b(1)1

]
opt

[
b(1)2

]
opt

[
w(2)
11

]
opt

[
w(2)
12

]
opt

[
b(2)1

]
opt

#1 −6.05 −6.05 −4.23 −4.24 2.36 6.29 −8.68 8.46 −3.94
#2 −6.20 5.64 5.91 −5.96 −3.78 −3.63 8.53 8.65 −3.68
#3 −6.28 −6.17 6.31 6.10 2.11 −3.28 −7.49 9.21 2.56
#4 −1.73 −8.76 1.74 9.31 −0.35 4.02 16.96 −11.51 1.02
#5 7.25 5.65 7.16 5.69 −3.25 −8.60 13.61 −14.04 −6.53

Figure 2. Convergence of the loss function for the minimal network with nh = 2 hidden
neurons as a function of epochs τ for various learning rates. For comparison, the loss
curve for a larger network with nh = 18 neurons in the hidden layer is also included.
Reference lines with values of the exponent γ attached support the power-law behavior
in the long term.

the space of parameter sets with marginal loss values close to zero is continuous, i.e. formally
there are infinitely many parameter sets that effectively solve the problem.

3.2. Convergence dynamics

A particularly striking feature in the optimization process of sigmoid neurons in this config-
uration of the network is that zero loss cannot be reached in a finite number of epochs. In fact,
as figure 3 shows, the values of weights and biases keep drifting as backpropagation proceeds
epoch by epoch. It poses the interesting question inhowfar the truncation point of the optimiz-
ation dynamics impacts the performance of the network for data the network was not trained
for (which cannot be verified for the logical problem in this study). From the curves for the
individual weights and biases shown in figure 3, we see that, after an extensive initial phase
with little change, a sudden separation sets in at the same time when the loss rapidly drops
(see figure 2). First, the weights of hidden neuron 1 start changing, which triggers a similar
drop in the weight w(2)

11 connecting this hidden neuron with the output neuron. In consequence,

also the bias of hidden neuron 1, b(1)1 , shifts to higher values. Only then, in a second step, all
other weights and biases respond accordingly, ultimately leading to the drop of the loss and
its convergence toward zero. However, even though this is achieved after about 80000 epochs,
the parameters keep changing monotonously.
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Figure 3. Drifts of weights and biases for the (a) hidden and (b) output layer as the
optimization process progresses through the epochs τ at learning rate η= 0.1. Note that
the pairs of weights w(1)

11 ,w
(1)
12 and w(1)

21 ,w
(1)
22 , respectively, are indistinguishable for this

solution (#1 in table 2) of the problem.

It is worth noting that the Adam optimizer [22] yields qualitatively the same results. The
convergence sequence for the individual parameters is identical to that shown in figure 3.
However, as expected, Adam is more efficient than stochastic gradient descent based on fixed
learning rates. Convergence sets in much faster.

Despite the parameter drifts, the activation of the output, a(2)1 , reliably converges to the
expected result in each of the four cases, as is shown in figure 4 for backpropagation at η= 0.1.
In early epochs, it fluctuates about 0.5, but only when the activations of the intermediate layer,
a(1)1 and a(1)2 , desync in a symmetry breaking process, a(2)1 can ultimately enter its conver-

gence channel. Somewhat surprising are the rapid turns of a(1)2 after separating from a(1)1 at
τ ≈ 70000 in the cases (0,0), (0,1), and (1,0), which initiate the transition process. The case
(1,1) is special insofar as the dynamics of a(2)1 embarked into the wrong channel and only

after an additional fluctuation in a(1)2 it corrects the direction and the output value eventually

approaches zero. It is the distinct split in the respective dynamics of a(1)1 and a(1)2 that make
this neural network find a solution to the XOR problem; a single intermediate neuron as in a
perceptron representation would not have been sufficient to drive the behavior of the output
neuron correctly.

It should be noted that the similar activation values in all cases at about 0.5 in the first phase
are a consequence of the small initial values of the parameters randomly chosen in the interval
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Figure 4. Convergence of activations a(l)i of hidden and output neurons to solution #1
in table 2 for all four cases listed in table 1 as functions of epoch τ for the XOR sigmoid
network. The learning rate was η= 0.1.
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Figure 5. Epoch of convergence τconv plotted as function of the deviation of initial (a)
weights w(l)

ij and (b) biases b(l)i from the respective optimal values for solution #1 given
in table 2. In each case, all other weights and biases are initialized at their optimal values.

(0, 0.1); the argument of the sigmoid function at the output is close to 0 and σ(0) = 0.5. The
advantage of this initialization is that convergence dynamics is well-behaved.

In order to better understand the approach to the solution, let us have a look at the conver-
gences dynamics if one parameter is shifted away from its optimal value, whereas the other
eight are kept constant at their optimal values. This is done for each weight and bias separ-
ately. The results are shown in figure 5. Epoch of convergence τconv is defined as the num-
ber of epochs it takes for the network to converge to solution #1 in table 2 if one specific
parameter is initialized at [w(l)

ij ]init = [w(l)
ij ]opt +∆w(l)

ij (weights) or [b(l)i ]init = [b(l)i ]opt +∆b(l)i
(biases), respectively. Convergence is achieved once the loss, averaged over up to 100 back-
propagation runs with the same parameter initializations (different seeds of the random number
generator generate different random batches, though), falls below the threshold value 0.005,
and a test with the nonrandomized batch also yields a loss value below this threshold. This
ensures that the network has indeed converged.

The results are quite remarkable and give us first clues regarding prominent features of the
loss landscape. First of all, we observe that all curves possess a plateau in the vicinity of their
optimal values (i.e. around zero for the shifted weights and biases). Whereas fast convergence
is expected very close to the zero point, the rather large extension of the plateau for positive and

10



J. Phys. A: Math. Theor. 58 (2025) 025001 X Yang et al

negative deviations from the optimal value is rather surprising. Imagining a higher-dimensional
loss landscape, this would mean that the optimal solutions are embedded in a region with
almost zero loss value. We can also see that the more the selected initial weight or bias is
shifted away from its optimal value themore rapidly the convergence dynamics changes. There
are interesting exceptions, though. Below certain threshold values, the variation of the initial
settings of the weightsw(1)

11 ,w
(1)
12 , andw

(2)
11 do not affect the solution at all. From figure 5(a), we

find that the convergence dynamics of the network is not altered if∆w(1)
11 < 2.2,∆w(1)

12 < 2.2,

or ∆w(2)
11 < 1.6 (provided in each case all other parameters are initialized at their optimal

values). This supports the conclusion that there is indeed a continuous space of solutions,
forming a valley or channel in the loss landscape.

Furthermore, it can be seen that for some of the parameter shifts convergence is slower, but
remains fairly constant upon alterations of the shifts away from the optimal values. This hints
at plateaus at higher loss values in the loss landscape.

3.3. Analysis of the loss landscape

In the following, we investigate the features of cross-sections through the loss landscape. For
this purpose, we compare the results obtained by using full nonrandomized and randomized
batches for the calculation of the loss in forward passes.

3.3.1. Nonrandomized batch. The loss was defined in equation (4) as an average of the
square deviations of the actual from the expected output values over the batch of all input
cases for any given set of parameter values. Therefore, the loss function depends on all para-
meters and can be interpreted as a landscape in this embedding space. For the network we
chose, the parameter space is nine-dimensional. In order to visualize some of its features,
we have calculated all 36 cross-sections in which seven of the nine parameters are kept con-
stant at their optimal values according to solution #1 in table 2, whereas two are varied about
their optimal values in a rather large range. Cross-sections for six different choices of variable
parameter pairs are shown in figure 6. Whereas all 36 cross-sections significantly differ from
each other, the selection already contains the most distinct features. It should also be noted
that, not surprisingly, landscapes look different for other solutions listed in table 2, but the
cross-sections possess similar main features like the ones shown in figure 6. Also included in
the figures are exemplified backpropagation or convergence trajectories with randomly chosen
starting points. Like for the loss landscape, the complete batch of the four cases listed in table 1
without randomization was used for the calculation of the trajectories and the steepest-descent
method was only applied to the two variable parameters, whereas the other seven were kept
strictly constant at their optimal values.

The most striking features in all figures are the channels, plateaus, and isolated rims and
wells at loss values between 0 and 1 at 0.25 increments, separated by steep slopes. The promin-
ent loss values of these features can be readily explained: according to our definition of the loss
as the sum of square deviations over the full batch as used in the construction of the landscapes,
zero loss can only be achieved if all outputs calculated by the network coincide exactly with
their expected values in all cases. In all cross-sections shown in figure 6, this point is located at
(0, 0), and regions with values close to zero are colored dark blue. An isolated well surrounding
this point is present in all cross-sections shown, except in figure 6(d), where the zero-loss point
is at the corner of a shallow triangular, almost plateau-like, region. In figure 6(b), there appears
to be a deep trench (also dark blue) with very small loss values converging to the zero-loss
point. Such a trench, albeit at higher loss values, is also visible in figure 6(f).
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Figure 6. Selected cross-sections of the loss landscape through the nine-dimensional
parameter space. Seven parameters are kept constant at their optimal values, and two
are varied about their respective optima in the ranges shown. Various trajectories are
included to visualize the backpropagation dynamics starting from the locations marked
by the red dots.
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Loss values ∼ 0.25 can typically be attributed to situations, where the XOR logic of one
case in the batch is determined wrongly (the output is either 1 instead of 0, or vice versa).
Those regions in the landscapes are shaded turquoise. It is noticeable that these regions often
form straight channels, but also plateaus.

If among the four cases in the batch two outputs are correct and two wrong, the loss value
is 0.5. This is the ‘highest-entropy’ situation as there are six possible combinations of pairs of
cases in the batch that lead to L= 0.5. Consequently, there are significantly more parameter
combinations representing this scenario than any other, and therefore the yellow plateaus asso-
ciated with loss values around 0.5 dominate in all figures. In contrast, larger loss values are
clearly suppressed in the parameter ranges plotted. Only in figures 6(b)–(d), we see red-shaded
rims with values at about L= 0.75, in which situation three cases in the batch are evaluated
wrongly. Areas with even higher loss values are not present in the parameter spaces covered in
any of the cross-sections analyzed in the vicinity of the optimal parameter settings. It should be
noted that all real loss values between 0 and 1 are permitted as the sigmoid output is continuous,
but near the optimal solution, only these distinct, almost discrete, shapes of the cross-sections
through the loss landscape are observed. However, for a problem with more than four cases in
the full batch, the landscape features are certainly more diverse. Note that thanks to the sig-
moid activations, all plateaus, channels, and trenches have slight slopes, i.e. there is always a
gradient toward lower loss values leading to a local minimum at loss values larger than zero
or a global minimum at zero loss.

Taking a closer look at selected convergence trajectories is quite revealing. These paths are
inserted into the plots shown in figure 6. Since in this consideration the complete nonrandom-
ized batch is used and not a stochastic one, the trajectories are smooth. The locations marked
in red define the starting points or initial conditions for the dynamics. The learning rate was
set to η= 0.1 in most cases (larger values were used where the dynamics was too slow). The
simulation was stopped once convergence to zero loss was achieved or preset limits of up to
60 million epochs were reached otherwise.

Figure 6(a) contains two different trajectories. The path beginning at (∆b(1)1 ,∆b(2)1 ) =
(−7.4,8.9) with loss value L≈ 0.5 rapidly reaches the cliff and drops to the lower level at
about L≈ 0.25. After residing there for a number of epochs it quickly descends to the bottom
and converges to the zero-loss point in the well. This is the common scenario of convergence
to the optimal solution.

The behavior is completely different for the path initiated at (∆b(1)1 ,∆b(2)1 ) = (15.0,−2.0)
(the loss value is L≈ 0.5), which represents an unsuccessful attempt. It also rapidly drops to a
trench at L≈ 0.25, but any further convergence is clearly prevented by a barrier separating this
channel from the well. The path gets stuck at a local minimum. It is somewhat surprising that
the loss landscape of this simple network we study here exhibits such features of complexity
and is a reminder that optimization is not a straightforward process.

In figure 6(b), the trajectory initialized at (∆w(2)
12 ,∆b

(1)
2 ) = (12.5,−12.5), for which

L≈ 0.48, contrasts the behavior described in the previous case. The origin of the path is delib-
erately chosen to be located behind a barrier, but the gradients are favorable and enable the
‘walker’ to pass by the ridge and directly drop into the basin of convergence to zero loss.

Another very interesting scenario is shown in figure 6(c). Two trajectories are initialized
in close proximity from each other, (∆w(1)

22 ,∆b
(1)
1 ) = (−5.0,10.0) vs. (−3.0,10.0), both at

loss values very close to L= 0.5. Whereas the former rapidly converges to the optimum point,
the other takes a turn, hits a barrier and is diverted away from the zero-loss attraction basin.
Millions of epochs later it still had not converged to this or any other solution. It seems the
trajectory got trapped in a local minimum at a loss values just below L≈ 0.5. This divergence
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Figure 7. Cross-section through the loss landscape with b(1)1 and b(2)1 variable for ran-
domized batches: (a) single run, (b) average over 100 runs. Compare with the result
obtained for the nonrandomized batch in figure 6(a).

in the dynamics of backpropagation for this system may hint at potentially chaotic behavior
in larger networks as landscape shapes are more fragmented. Note that there is no stochastic
component in the way we backpropagate here. At any given location, trajectories follow the
steepest decent and cannot climb uphill.

3.3.2. Randomized batches. Randomized batches are typically used for the learning pro-
cess of large neural networks, where working with the full batch is not economical. It is a
necessity if mini-batches are used. In this section, we again use the full batch, but with random-
ized cases, to determine cross-sections through the loss landscape. Since the results strongly
fluctuate due to the stochastic sampling of the batch compositions, the loss landscape looks
fuzzy for a single scan. This is shown in figure 7(a) for the cross-section, where b(1)1 and b(2)1 are
variable and all other parameters are kept constant at their optimal values, according to solu-
tion #1 in table 2. Compare this to the smooth cross-section plotted in figure 6(a), which was
obtained using the nonrandomized batch. It is interesting that, despite the strong fluctuations,
the main landscape features are already visible. After averaging over 100 different scans (see
figure 7(b)), we find that the landscape shape indeed converges to the result we obtained for
the nonrandomized batch. This is reassuring as it confirms that the randomization of batches
is a viable option and does not alter the basic landscape features including the attraction basin
toward the optimal solution.

3.4. Density of loss and microcanonical entropy

In modern statistical physics, the density of states g(E) is often used for the identification of
significant thermodynamic features such as phase transitions in complex physical systems. If
X is the phase space vector of all degrees of freedom (such as coordinates and momenta in
Hamiltonian systems), it is defined as
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g(E) =
ˆ

DXδ (H(X)−E) , (8)

where H is the energy function or Hamiltonian assigning the state X an energy value, andDX
symbolizes the multi-dimensional integral measure in the state space. The integral over the
Dirac δ distribution therefore counts howmany states share the energy E. Since g(E) addresses
all states available in the phase space of the system, it can be interpreted as the phase space
volume per energy unit and therefore allows for the introduction of the so-called microcanon-
ical or restricted entropy according to Boltzmann’s formula:

S(E) = kB lng(E) , (9)

where kB is the Boltzmann constant. This relation is the foundation of statistical physics and
connects it to thermodynamics. As the system behavior is governed by the competition of
enhancing entropy and reducing energy, which for most systems leads to stable thermody-
namic equilibrium phases, equation (9) contains all information about the phase transitions a
system may experience. Since the inverse temperature is defined as β(E) = dS/dE, curvature
properties of S(E) even allow for the identification of transition temperatures. The recently
introduced generalized microcanonical inflection-point analysis method [14] enables the sys-
tematic identification and classification of all phase transitions. It can even be used for finite
systems, where the hypothetical thermodynamic limit needed in the conventional theory of
phase transitions cannot be employed.

In this context, we may consider a neural network a complex physical system and interpret
the learning process as a cascade of phase transitions. This can even be done for the simple
artificial neural network discussed in this paper. We replace the energy by the loss and redefine
g(L) as the density of loss. Then S(L) = lng(L) is a dimensionless microcanonical entropy for
this problem. The shape of this curve should encode the information about the activation steps
needed in the learning process to overcome the transition barriers (if there are any) toward
the accomplishment of the learning objective. In this sense, learning is an annealing process
passing through different phases from high-entropy states (high temperature) to the optimal
solution, which represents a low-energy state (as temperature approaches zero).

Another advantage of this approach is that it covers the entire state space, but S is only a
function of a single variable, L. This reduces the effort of trying to find features of the loss
landscape by means of cross-sections, as done in the previous sections, dimensional reduction
or the introduction of specific order parameters.

Microcanonical entropies for networks with nh neurons in the hidden layer, obtained by
generalized-ensembleMonte Carlo simulations [23–26], are shown in figure 8. From the curve
for nh = 1 it is obvious why the perceptron fails solving the XOR problem: There are simply
no zero-loss states in the parameter space. For networks with two and more hidden neurons,
multiple sets of parameter values for zero loss can be found. The entropy is largest around
L= 0.5 and noticeable peaks are also found at L= 0,0.25,0.75, and 1.0. This is expected
from the discussion of the cross-sections through the loss landscape in the previous sections.
Despite the expectation of an enhanced entropy at these specific values from the discussion of
the loss landscape, the very strong suppression of loss values in-between is, however, aston-
ishing and responsible for the general complexity of the learning process. The entropy curves
for networks with smaller hidden layer show additional minor peaks. These correspond to
intermediate plateaus in the loss landscape and effectively slow down the optimization pro-
cess. Even though adding neurons to the hidden layer significantly increases the dimension
of the parameter space, these extra dimensions enable the optimizer to bypass these entropic
barriers. Therefore, larger networks can improve the learning efficiency. As figure 8 clearly
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Figure 8. Microcanonical entropies S(L) for XOR networks with different numbers of
neurons in the hidden layer, nh. The curves have been shifted relative to each other
vertically for better visibility.

shows, these entropic ‘finite-size’ effects gradually disappear as the number of hidden neur-
ons is increased. This supports a virtually barrier-free learning process in larger networks [27].
This can be essential for large-scale problems, where the optimization usually starts from lar-
ger loss values. However, for the small, discrete problem studied here, no obvious benefits
from the smoothing of the entopy curves for the larger networks were observed in this phase
of the learning process (cf comparison for nh = 2 and 18 at η= 0.1 in figure 2).

In the context of thermodynamic phase transitions, convex regions of the microcanonical
entropy indicate first-order phase transitions [14, 16, 28]. In thermodynamic systems, first-
order transitions are associated with latent heat, i.e. additional energy needed to overcome
attractive interactions that keep particles bound to each other. In this dissolution process, the
temperature remains unchanged, thereby slowing down any annealing process. It does not
seem far fetched to adopt this interpretation here andmake the convex entropy regions respons-
ible for the slowing-down of the learning processes in neural networks, artificial and real. It
will be an intriguing future task to investigate larger networks (large input data sets or num-
ber of cases and therefore possessing a network state space of much higher dimensionality)
in this respect. The expectation is that the peaks and thus also the negative-slope sections
in the convex regions of the entropy curve deteriorate. Negative slopes correspond to negative
microcanonical temperatures and represent unstable non-equilibrium behavior in physical sys-
tems. Entropy curves for larger networks should therefore look smoother and their curvatures
may encode inflection points in higher-order derivatives indicating transitions higher than first
order. The reason for these assumptions is that an artificial neural network can serve as a model
for a real neural network. Therefore, statistical properties of larger artificial neural networks
are expected to closely resemble features of complex physical systems.

4. Summary

Understanding the dynamics of optimization processes for artificial neural networks and
identifying structural properties in the loss landscape that either accelerate or decelerate the
training process should be considered a key task in helping develop fields of machine learning
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and artificial intelligence more systematically. In this paper, we have studied aspects associ-
ated with this problem for a very simple sigmoidal neural network that represents the XOR
logic with a two-bit input and single output. An analysis of the convergence dynamics showed
that for fixed learning rate, network parameters need to correlate cooperatively in order to cor-
rectly activate neurons. We also found that, whereas convergence toward the solution (i.e. zero
loss) is achieved, weights and biases keep drifting and, by themselves, do not converge at
all, which was unexpected. This behavior can be explained by the long-term behavior of the
optimization process, which exhibits a power-law decay with a characteristic exponent, which
is independent of the learning rate, but depends on the number of hidden neurons. Ultimately,
these network properties result in a loss landscape with distinct properties.

Investigating cross-sections through this landscape, we noticed that in the vicinity of the
optimum, characteristic features like wells, channels, trenches, barriers, plateaus, and rims
dominate. These geometric shapes significantly impact the convergence dynamics of the back-
propagation optimization method we employed to find optimal solutions. The study as to in
how far these features connect to each other in the full high-dimensional parameter space is left
to future work. Also, the shape of the loss landscape depends on other factors as well, e.g. the
choice of the activation function. Whereas simpler activation functions than the sigmoid func-
tion used in this study may reduce computational cost in the forward pass, the optimization
could be negatively affected by other types of landscape barriers. For example, our tests with
ReLU activation have shown that successful convergence much more sensitively depends on
the initial parameter settings and learning rates than it was in the case of sigmoid activation.
We also investigated potential impacts of nonrandomized and randomized full batches of input
data on the landscape features and found that the landscape features obtained by averages over
randomized batches resemble those obtained from the forward passes of the nonrandomized
batch. Randomization, which is a necessity when using mini-batches for large data sets, may
even accelerate the annealing process in the search for the optimal solution.

Eventually, we introduced the microcanonical entropy of neural networks as the logarithm
of the density of loss as a variant of the density of states that commonly aids the understanding
of the statistical physics of phase transitions in thermodynamic systems. Comparing entropy
curves for networks with different numbers of hidden neurons reveals the disappearance of
smaller entropic barriers, which indeed supports earlier claims that optimization processes in
neural networks are essentially barrier-free [27]. The analysis of curvature features of microca-
nonical entropy curves has turned out to be very useful in the identification and classification
of phase transitions in physical systems [14]. Transferring this idea to neural networks, dif-
ferent stages of learning success represent stable phases. Rapid, low-entropy drops in the loss
landscape can then be understood as phase transitions accompanying the learning process.
Approaching zero loss is equivalent to cooling down a macroscopic system, i.e. entering more
and more ordered phases with lower entropy until, ultimately, the ground state is reached.
The results obtained in this simple case study are already intriguing and may encourage more
generalized analyses for larger networks. The identification of virtual, effective parameters
for the representation of the loss landscape may help guide network training processes more
efficiently.
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