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Period-doubling bifurcation in strongly anisotropic Bianchi | quantum cosmology
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We solve the Wheeler-DeWitt equation for the minisuperspace of a cosmological Bianchi type-1 model with
a minimally coupled massive scalar field ¢ as the source by generalizing the calculation of Lukash and
Schmidt [Astron. Nachr. 309, 25 (1988)]. Contrary to other approaches we allow strong anisotropy. Combining
analytical and numerical methods, we apply an adiabatic approximation for ¢, and as a new feature we find a
period-doubling bifurcation. This bifurcation takes place near the cosmological quantum boundary, i.e., the
boundary of the quasiclassical region with an oscillating ¢ function where the WKB approximation is good.
The numerical calculations suggest that such a notion of a ““‘cosmological quantum boundary’” is well defined,
because, sharply beyond that boundary, the WKB approximation is no longer applicable at all. This result
confirms the adequateness of the introduction of a cosmological quantum boundary in quantum cosmology.

PACS number(s): 98.80.Hw, 98.70.Vc

I. INTRODUCTION

The idea to consider the whole Universe as one quantum
system has already attracted many researchers. One of the
approaches to give this idea a physical meaning is to con-
sider the superspace S of all possible spatial three-geometries
together with the matter field degrees of freedom as super-
coordinates, and the supermomentum space S* is formed
from the corresponding second fundamental forms together
with the momenta of the matter fields. The dynamics will
then be defined by the Einstein field equation accompanied
by the matter field equations. In the last step, this system will
be quantized.

Of course, one has to deal with an infinite number of
degrees of freedom already from the geometric part. The
only way to tackle such a system up to now is to linearize in
almost all degrees of freedom and to take the nonlinearities
only from the remaining finitely many ones. But even this
system is almost untractable. So, the idea of the minisuper-
space arose: One restricts to a finite-dimensional space of
spatial geometries and to matter fields with finitely many
components, disregarding or even ignoring all other degrees
of freedom.

From the first glance one could believe that such a big
simplification would lead to a picture which has nothing to
do with the real Universe’s evolution. However, the results
given in the last years are encouraging: The dynamics of the
minisuperspace can be written as an equivalent mechanical
system, and then the zero-energy-Schrodinger equation for
this system carries the name ‘‘Wheeler-DeWitt equation,””?
which can be solved for simple systems and gives already a
surprisingly good picture of the evolution, even for the case
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Though this identification represents partially a misnomer, it is
quite usual in the literature, see the more detailed explanation in
Sec. V B.
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that the geometric part is restricted to only one degree of
freedom, the “‘radius’’ of the Universe. This corresponds to
the isotropic Friedmann Universe model. For this case,
closed-form solutions for the Wheeler-DeWitt equation exist.

In the ordering with respect to simplicity, the next pos-
sible geometry is the Bianchi type-1 model, where the spatial
inner geometry is flat, but the expansion is allowed to be
anisotropic. For this case, we have three degrees of freedom
for the geometry: the expansion rates into the three spatial
directions.? For this case, the Wheeler-DeWitt equation is
already quite complicated, so one uses an approximation to
solve it. One of the most powerful of these approximation
schemes is the Wentzel-Kramers-Brillouin (WKB) approxi-
mation. In Ref. [1], the first-order WKB approximation for
the massive scalar field in the Bianchi type-1 model has been
deduced, but—as far as we are aware—the higher-order
WKB approximations have not yet been calculated up to
now for this model. The analogous calculations for the Bi-
anchi type-1X model have been done by Amsterdamski [2].
In both cases, the anisotropy degrees of freedom had been
assumed to be small. In the present paper we allow also large
anisotropies. Reference [3] deals with a similar model allow-
ing large anisotropies, too; however, the authors of [3] use a
simpler minisuperspace model, so the results are not directly
comparable to ours.

The text is organized as follows: Sec. Il presents the ge-
ometry of the Bianchi type-l cosmological model, Sec. Il is
the corresponding Wheeler-DeWitt equation, and Sec. 1V its
solutions both analytically and numerically. Section V
shortly reviews Refs. [6-48], i.e., the earlier developments
of the topic, and discusses the results.

In the Appendix, we show how the different versions to
solve the factor-ordering problem influence the solutions of
the Wheeler-DeWitt equation.

2Strictly speaking, the axially symmetric Bianchi type-1 model,
where two of the three scale factors coincide, is even simpler, but as
one will see from the calculations: restricting to axial symmetry
does not really simplify the procedure.
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II. THE BIANCHI TYPE-I MODEL

The metric of a spatially flat cosmological model is de-
duced as follows. One requires that an Abelian three-
dimensional isometry group acts transitively on three-
dimensional spatial hypersurfaces which consequently have
to be flat three spaces. This restricts the possible metrics to

ds?=N2dt?—g;;dx'dx/, (2.1)
where N=N(t) is the lapse function which can be put to N
=1 by a time reparametrization, i,j=1,2,3, and g;; repre-
sents a symmetric positive definite matrix whose components
depend on t only. So we have six free components from the
first consideration. However, restricting to metrics being a
solution of Einstein’s field equation we can simplify as fol-
lows: At any initial time, say t=0, we can choose the initial
condition

g,J=5|J=dlag(1,1,1) at=0 (22)
without loss of generality, and then by a spatial rotation not
changing Eq. (2.2), the second fundamental form, i.e,
dg;;/dt, can be brought into diagonal form. By use of the
Einstein equation one can show that under these circum-
stances, g;; will keep its diagonal form for all times. Thus:
The Bianchi type-1 model containing nondiagonal terms does
not represent a generalization, and we can say that without
loss of generality let

gi; = diag(A%(t),B?(t),CA(t))

with certain positive functions A,B,C.
After an obvious rearrangement of the terms we get now
from Egs. (2.1) and (2.3)

(2.3)

dSZZ NZdtZ_ eZa(625+ 2\“‘§rdx2+ eZS—ZV‘@rdyZ_i_ e_45d22),
(2.4

where «,r,s represent three arbitrary real functions depend-
ing on t. The Hubble parameter is the mean expansion, i.e.,
with a dot denoting d/dt we get

1A B C
“3latsTc)

In the notation of Eq. (2.4), H=da/dt is the Hubble param-
eter, and we restrict our considerations to the expanding Uni-
verse, i.e, to H>0. The model goes over to the spatially flat
isotropic Friedmann model if the dimensionless anisotropy
parameter

y= i s

(2.5)

tends to zero.

It is essential to observe that this approach leading to the
Wheeler-DeWitt equation breaks the Lorentz invariance of
the system aready at this level of geometry: The 3+1 de-
composition of space time is aready made from the begin-
ning. The remaining degrees of freedom within the geometry
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are the following: T(t) as arbitrary function as long as N(t)
remains unspecified, and t(t)= *t after having fixed N=1.
Permutations of the three spatial coordinates, and for the
axially symmetric case also spatia rotations, such as if r
=0, then arotation in the xy plane is an additional symme-
try. We presented this geometric part so explicitly, because
contradicting statements exist about this behavior in the lit-
erature; for example: In our interpretation, ds?=dt2—dx?
—dy?—dz? and ds?=dt?>—t2dx?>—dy2—dz? represent dif-
ferent geometries in spite of the fact that they are localy
isometric space times.

We use a one-component real massive scalar field ¢ as a
source, and we interpret it as follows: Either it can really be
such a scalar field (i.e., a spin zero field), e.g., a Higgs field
which dominated the early Universe's evolution but disap-
peared after a symmetry-breaking effect. Or, it mimics any
realistic matter field in a region where spin is negligible. Let
m denote the mass of the scalar field. For the grand unified
theory (GUT) mediated inflationary model, one considers the
following order of magnitude: m~10"°mg, where my is
the Planck mass.®

Up to now, we did not restrict the spatial coordinates X, v,
and z. At the classical levd (i.e,, for locally solving the Ein-
stein field equation), it makes no difference, whether they
cover al the reals or whether they are cyclic ones. But al-
ready for global classical considerations it makes a differ-
ence: Suppose, X, Yy, and z are cyclic, then even for the case
r=s=0 the metric is not spatially isotropic, because the
natural length of a closed spatia geodesic depends on the
chosen direction. However, we get the essential difference
only after quantization. If nothing different is said, we as-
sume X, y, and z to be cyclic with modulus 1, i.e., X and X
+1 represent the same point, etc.

I1l. THE WHEELER-DeWITT EQUATION

The Wheeler-DeWitt equation is aways a zero-energy-
Schrodinger equation* due to time-reparametrization invari-
ance of the gravitational action. However, thisis not realy a
problem, because the Schrodinger equation with nonvanish-
ing energy can be brought to the zero-energy form by a suit-
able shift of the potential, see, e.g., Ref. [4] for a class of
transformations of this type.

In the present paper, we do not consider the entropy of the
system; we only want to mention the recently published re-
sult of Kleinert [5] on how the incorporation of entropy can
change the model.

To formulate the equations that lead to the Wheeler-
DeWitt equation [6] as easily as possible, it proves useful to
apply units such that #=c=47G/3=1. Then the Lagrang-
ian of the minimally coupled scalar field in Einstein’s theory
of gravity (see the first of Refs. [1] for details) is given by

L=Lg+Lp, (3.1

3In units with c=1, the Planck mass is about 10™° GeV.
“But, see also, the discussion in Sec. V B. for this notation.

043515-2



PERIOD-DOUBLING BIFURCATION IN STRONGLY ...

where the gravitational part is

1 . . .
Ly=z—e3%(r’+s?—a?)

9= 2N (3-2)
and the matter Lagrangian is
L= 5 €8 2 m2gN) (33)
m 2N ' |

Here we supposed the lapse function N to be constant in
time. The minisuperspace is four-dimensional, its coordi-
nates are 9*=(q°,9%,92%,9%) withq°=a, q'=¢, g°>=r, and
g®=s. The usefulness of the Misner parametrization Eq.
(2.4) of the anisotropy is obvious: The kinetic part of the
Lagrangian is aready in diagona form. By defining the
minisuperspace metric fﬂ,,ze3”‘ diag(—1,1,1,1) the L&
grangian (3.1) is compactly rewritten as

1 .o
[f,0°9"—m?(qh)°N%e™"].

L= N (3.4
Thus the introduction of canonical momenta
T 35

alows us to write down the classica Hamiltonian of the
mi ni superspace

H= g[pﬂp“—l— m?(q*)%e%1]=0. (36)
Time-reparametrization invariance implies dH/dN=0, i.e,
‘H=0. The quantization in coordinate space is done as usua
by going over to the appropriate operators p,= —ifd/dgq*
with the partial derivative 4.

From now on, we will choose two different versions for
the operator ordering in p,p*: Firgt, variant A, which is the
most simple one, following the interpretation in Ref. [1] that
the solutions of the forthcoming Wheeler-DeWitt equation
will not essentially depend on this choice.

Second, variant B, solves the factor ordering problem by
applying the supercovariance principle: It says that the es-
sential equations have to be covariant ones with respect to
the (mini-)superspace metric. Taking variant B, we have to
replace p,, by p,=—iAV/Vqg*, where V denotes the super-
covariant derivative> defined by f,,, .

To cover both variants simultaneously, we introduce a
parameter € as follows: e=0 for variant A and e=1 for
variant B. Accordingly, we denote the two variants of the
D’ Alembert operator® (1, by

SHere we apply the fact that the metric is always covariantly con-
stant, so different orderings give the same result.

5The minus sign in Egs. (3.7) and (3.8) is inserted to compensate
for the factor i2 in front of (S Lo
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&2
Doz_fwaq#aq“ 3.7)
and
2
Dlz—f“”w. (3.8)
For the world function ¢(g*) we get the relations
Oy =0+ 3¢ e 3 (3.9)
where’
Ooy=e"* Yoo~ 11— ¥~ ¥ 33]. (3.10)

The stationary Schrodinger equation with zero energy in
mini superspace fw(qﬂ):o with the wave function (qg*)

and the Hamilton operator 7{ is called the Wheeler-DeWitt
equation and possesses the form

Hip(a#) = g[ﬁzmﬁm2<q1>2e3Q°]¢<qﬂ>=o (3.11)

for the Bianchi type-| Universe (2.4). In detail, we get after
dividing by Ne32/2

+m2¢2e6a> Wla,d,r,s). (3.12)

In what follows we derive an approximation scheme to solve
the Wheeler-DeWitt equation.

IV. SOLUTIONS OF THE WHEELER-DeWITT EQUATION

Before we go over to solve Eq. (3.12) we want to clarify
in subsection A what happens if we neglect the anisotropy
from the beginning. In subsections B—D we analytically ob-
tain solutions in a well-defined approximation, and in sub-
section E we present the results of our numerical calculation.

A. Isotropic models

For variant A, i.e.,, e=0 in Eq. (3.11) we get

#? 9P
0=| 4% —-—
da®  J?
i.e,, we simply remove al r and s dependences. For variant
B, however, this recipe does not work because the covariant

+ m2¢266“) pla,$), (41

"I the dimension of the minisuperspace is D instead of 4, then the
factor 3 in front of ¥, in Eq. (3.9) will be replaced by 3(D
—2)/2, so O, and O, coincide for D=2.
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derivatives mix the coordinates. After a short calculation one
finds out that here aso Eq. (4.1) is the correct Wheeler-
DeWitt equation. The reason for this coincidence is as fol-
lows. The two-dimensional superspace is conformally flat,
and the D’ Alembertian is conformally invariant, cf. the sec-
ond paper in Ref. [1] for more details.

Defining a=e*>0 as new variable we have to replace
dlda by a(dl da), and we get from Eqg. (4.1) now

o 9 3
a—a_-——

—| 2
0 (ﬁ da da  5¢?

+ m2¢2a6) Wa,¢), (4.2)

a version of the Wheeler-DeWitt equation favored in Ref.
[7].

B. Separation ansatz

Now we look for the solutions of Eq. (3.12). First, we
make a separation ansatz

Wa,d,1,5)=x(a,¢)-p(r)-o(s). (4.3)
It turns out that p ,,/p=C, and o z3/0c=C3 represent con-
stants, i.e., we get

p(r)=prexp(\/c,r) + poexp(—car)

and

()= o1exp(1/c38) + opexp( — \/c38)

with arbitrary constants p; and o;. For negative values c,,
the function p(r) has a sinus-function behavior.

One can interpret these cases as follows: If both ¢, and ¢4
are negative, then we have plane waves in the r and s direc-
tion. Thisisin agreement with the fact that a trandation into
the r or s direction can be compensated by a coordinate
transformation in metric (2.4) (i.e., by multiplying x, y, and z
with suitable constants), so that all r and s values should be
equally probable. However, this interpretation works only in
the case that we alow X, y, and zto cover al thereals. If we,
however, restrict X, y, and z to be cyclic coordinates, then this
argument in favor of equal distribution of the r and s values
is no more valid.

If, on the contrary, one of the constants ¢, or c; is hon-
negative, then (up to singular exceptions) the product
p(r)-o(s) tendsto = asr or s does. This allows the fol-
lowing interpretation: The probability to have small anisot-
ropy is exponentialy small.

For the moment we keep the further interpretation open
and continue the calculation. We define the constant ¢, via
C1+Cy+Cc3=0 and insert Eq. (4.3) into Eq. (3.12); we get

2 J 2
—+36——?

_| 2
o-(17 L eser

+cih%+ m2¢2e6“) x(a, ).
(4.4)

This equation is for variant A just the Wheeler-DeWitt equa-
tion (4.1), however, now not the zero-energy equation but
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the eguation with energy proportional to the constant ¢, rep-
resenting the anisotropic degrees of freedom.

We redefine the coordinate « to v =a*=e3*. The coordi-
nate v is proportional to the spatial volume. Then Eq. (4.4)
goes over to (after dividing by 9)

0=| 4?2 i + .7 +c,%2/9
B v Jdv U&v €v w9 €
+m2 %29 | x (v, b) (4.5)

As one can see in comparison with Eq. (4.2). Instead of the
a® term we now have a v? potential.

C. Adiabatic scalar field

In this subsection, we assume the scalar field ¢ to be
amost constant. Then y defined by y2=m2¢$?/(942) is an
adiabatic constant. In Eqg. (4.5) we omit the ¢ derivative
corresponding to the adiabatic approach. To this end we con-
sider the following equation for the exact dependence on v

of a new function y:
Jdv  dv Jdv

[
=E($)-x(v, ),

where E(¢) is an yet undetermined eigenvalue; here, ¢
plays the role of a parameter only. We define a new adiabatic
constant A by A?=E(¢)h ?>—c,/9. Then Eq. (4.6) be-
comes for e=0

Jd d

d N
v—v— +ev —|+C1A%9+ Y2 ?h? | x(v, P)

(4.6)

Jd d 5 2 o)~
0505+7v —A“|x=0. 4.7

Equation (4.7) is a Bessel-type ordinary differential equation.
If we replacein Eq. (4.7) yv by x and x(v, &) by y(x,¢) we
get exactly Bessel’s form

d? d
Y +x—y+(x2—A2)y=O

2 7
X BRI (4.8)
whose solutions are (the constants C; depend on A)
y=C1IA(X)+CaJ_A(X). (4.9

The J, are called cylinder or Bessel functions and have the
development

(k) YT (A+k+1)] L
(4.10)

X)A+2k

=2 (—1>k(§

Now we make the ansatz®

8f only a discrete set of values A appear, Eq. (4.11) will be
replaced by an analogous sum.
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o= [ bu@iwpdr, @1

where we assigned to y the subscript A to emphasize y,
being an eigenfunction with eigenvalue A. Thus the general
solution of Eq. (4.7) is written as

Xa(0,3)=Cid\(y)+Cod_y(y).  (412)
Inserting ansatz (4.11) into Eq. (4.5) we get
9? .
0=JA—hzrﬁz[bA(sé)x(vﬁ)HbA(cﬁ)
x| #2 u%v%+% + %202¢2 x(v,¢)dA.
(4.13)

In the second term of Eq. (4.13) we replace the term in the
brackets [ ] by the eigenvalue E(¢) according to Eq. (4.6).

PHYSICAL REVIEW D 62 043515

E(¢) depends on c,, c3, and A only, i.e., there is no ¢
dependence, and we write E instead of E(¢):

92 . .
0=fA—ﬁZ&TSZ[bA(@X(v.(ﬁ)HbA(¢)EX(v,¢)dA-
(4.14)
In Eq. (4.14) we first write out the 9°/d¢? applied to the

product, but we assume that only (6%/9¢?)b,(¢) is essen-
tial, and disregarding the other terms® and assuming that the

x's are all independent we get

&2
_ﬁz&T)erE ba(¢)=0, (4.15)

which possesses solutions
ba(¢)=B,eE" 1B EA, (4.16)

Finaly, we get the general wave function

Y (a,.1,5)= (prexp{\/Car } + poexp{ — Veor }) (o 1exp{\/css} + opexp{ — Vcss}) fA[Blexpr—(c2+c3>/9¢}

+B,exp{ — VA — (Co+ C3)/9¢} [ C1I A (Mpe3/3h) + Cod _ ,(Mepe3¥/3h) ]dA

with real and for the moment continuous eigenvalues c,,Cs.
The superscript (¢) at ¢ indicates that we have treated the
scalar field adiabatically. This solution has to be specified by
appropriate choices for the constants p,, p,, o1, 02, By,
B,, C4, and C, from boundary conditions. Before discussing
the result (4.17), however, we calculate the wave function by
considering the scale factor « as the adiabatic variable.

D. Adiabatic scale factor approach

Another adiabatic method to solve the Wheeler-DeWitt
equation (4.4) is to treat the scale factor a as a dowly vary-
ing variable.

Once more, we reexpress the scale factor o by v=e3?,
implying that we consider the Wheeler-DeWitt eguation
(4.5) in the following. Considering v as the adiabatic vari-
able means that we neglect derivatives with respect tov in a
first step. Then Eq. (4.5) becomes

P X 1
_h27¢2+_cl+§m2¢2v2

x(v,¢)=E(v)x(v,)
(4.18)

9

with E(v) being a still undetermined eigenvalue. By defining

1 - w 1 72
w=3zMy, X= \/%d), 7J=%(E(v)—301),
(4.19)

(4.17)

the differential equation (4.18) is simply transformed into
that for the dimensionless harmonic oscillator

d? — |~
TZ+(77—x2) y(x)=0. (4.20)
X

By substituting x=x? and then transforming Y(X)
=e ¥?y(x), we eventually obtain Kummer's differential
equation

d?y(x)
dx?

dy(x)

X +(,u,—x)d—x—vy(x)=0, (4.21)

where in our case uw=1/2 and v=(1— #)/4. This differential
equation possesses the general solution

y(X)=A1F1(v,u;X)+BF1(v—pu+1,2— w;x)xt 4,
(4.22)

expressed with the help of the confluent hypergeometric
function ,F4(a,b;x). A and B are constants. Thus the partial
problem of finding the solution of Eq. (4.18) is done and the
result is written as

This is usually called adiabatic approximation with respect to ¢.
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XV, B) =€ W AT (1 9)/4,112;0(v) p2IH]

w(v) _ ’
+B T¢1Fl[(3— mI4,312;w(v) IR ]

(4.23)

with )A(,, denoting the eigenfunction to the real, continuous
eigenvalue 7.

For further processing to find an adiabatic solution for the
Wheeler-DeWitt equation (4.5) we make the integral ansatz

X(v,¢)= f 9,(0) X (v, $)d7. (4.24)
n
Inserting this into Eq. (4.5), we obtain (for e=0)
, @ 4 . ,
0=Jnﬁ vgvg[gn(v)xn(vycﬁ)ﬂgn(v) —h asz
1 R
+§(hzcl+m2¢zvz) X,(v,d)dn. (4.25)

The expression enclosed in the brackets [ ] in the second
term is substituted by the eigenvalue

1
E(v)=§[3hmnv—h2(cz+c3)], (4.26)

following from Eqg. (4.18) and the definitions (4.19). In con-
trast to the preceding approach with an adiabatic scalar field,

PHYSICAL REVIEW D 62 043515

E(v) depends explicitly on the adiabatic variable which isin
this case v. Note that E(v) aso depends on the eigenvalues
C,, C3, and n. Now we utilize the assumption of the adiaba-
ticity with respect to v by neglecting terms containing de-
rivatives dy,,/dv and %y, /dv? which appear in the first
term of Eq. (4.25). Furthermore, supposing that all functions
5(,,(0,45) are independent with respect to », each integrand
in Eq. (4.25) vanishes. Thus we remain with solving the
differential equation

h? i +E =0 (4.27)
U&vvﬁv (v)|9(v)= .
or, more explicitly,
2 fog —Kg =0 4.28
v o2 vo TRy g(v)= (4.28)

with x;=mu/3% and k3=4(c,+c3)/9. Applying the trans-
formation x=2\/k;v and denoting the solution as y(x)
=g(v(x)), Eq. (4.28) takes the same Bessel form as given in
Eq. (4.8), whereas the index is k, instead of A here. For this
reason the genera solution of Eq. (4.28) reads

9,(v)=D1da(c,+cyye(VAMnv/3h)
+ D2 4(cy+cyyo( VAMAUI3h)

with constants D4, and D,.

Thus, the complete general wave function obtained with
an adiabatic scale factor approach (indicated by superscript
«a) isfound to be

(4.29)

i) (a,,1,5)=[ prexp{/Car } + poexp{ — Veor H o exp{\/cas}) + opexp{ — Vcss}]
Xf [D1d4(c,+ cyyo( VAM7E*13h) + D J 4(c, s cyyio VAM7NE®/3h)]
n

X exp{ — m¢2e3“/6h}[ A F[(1—7)/4,2/2;m¢p?e3*/3h]

m 3al2 . 2,3a
+B /5 4€™F1(3— )43z mge 3] |d7

with constants pq, p2, 01, 05, A B, Dy, and D, to be
determined via appropriate boundary conditions. The anisot-
ropy quantum numbers ¢, and c; are supposed to be real at
this stage. Certain boundary conditions, such as requiring the
wave function to vanish for infinitely large values of «
and/or — a, lead to replacing the integral by a sum over 7.

E. Visualization of the world function

Now we visualize the results of our numerical calculation
of the world function (4.17). To get an impression about the

(4.30)

probability amplitude, we concentrate on the absolute value
of the wave function which is given in Figs. 1-6 in depen-
dence of «, the logarithm of the cosmic scale factor, and the
scalar field ¢. Each figure is printed at fixed values of the
other parameters, see the corresponding explanation in the
text.

For all these essentially different ranges of parameters we
got essentially the same picture: The right part of the figure
is the region where the WKB approximation is valid, that
means, the solution is close to a sinus-shaped wave with a
slowly varying amplitude. The left-hand side is the quantum
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FIG. 1. The absolute value of the wave function || (vertical
axis) in dependence on « (axis from left to right) and ¢ (axis from
front side to back side of the picture) at r=s=1 and c,=4 and
C3:7.

region where no oscillations exist at al.

The range where these two behaviors go into each other,
is relatively sharply defined. This range is what one usually
calls the “*cosmological quantum boundary,’” and these pic-
tures show up that this notion is relatively well defined.

A new feature of these pictures is the following: All of
them show a period-doubling bifurcation of the frequency if
one looks from the bottom to the top of these pictures.

V. DISCUSSION
A. Short review of the existing literature

Before we discuss the results of the present paper we give
a short review to other papers. The original paper [6] by
DeWitt was seminal to the whole development of quantum
gravity. Its application to minisuperspace cosmological mod-

FIG. 2. The same as Fig. 1, now ¢c,= —4 and c;=7. The dif-
ferent spacing of the || axis should be noted.
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FIG. 3. The same as Fig. 1, now ¢c,=—4 and c3=—7.

éls has been developed by severa researchers, e.g., the au-
thors and editors of Refs. [7] and [8]. At that time, the main
discussion dealt with the closed isotropic Friedmann models,
and the spatially flat Friedmann models had been included as
less interesting limit cases, too.

In[9] and [10], Schon and Hajicek perform a quantization
of systems with quadratic constraints and discuss the
Wheeler-DeWitt equation. In Ref. [11], Landsman gives de-
tails which Hilbert space might be appropriate for the isotro-
pic minisuperspace quantization, a topic which was not much
discussed before.

In the recent preprint by Kim [12], the minimally coupled
massless scalar field in an open isotropic Friedmann model
has been discussed and its Wheeler-DeWitt equation be
solved from the point of view that the Universe is created
guantum mechanically from ‘‘nothing."”’

Recently, Capozziello and Lambiase [13] investigated the
connection between the Hartle criterion for selecting corre-
lated regions in the configuration space of dynamical vari-
ables and an associated Noether symmetry. This relationship
serves to classify solutions of the Wheeler-DeWitt equations
in semiclassical minisuperspace models. Thus, the oscilla-

1000
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FIG. 4. The same as Fig. 1, now c,=0 and c;=0.
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150
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FIG. 5. The same as Fig. 1, now ¢c,=1 and c;=1.

tory behavior of a subset of solutions entails the presence of
Noether symmetries which, in the consequence, select clas-
sical Universe models.

The paper [14] by Schunck and Mielke is related to the
models discussed here as follows: They apply the Wagoner-
Bekenstein-Starobinsky-transformation for classifying infla-
tionary solutions with scalar field as source, and this classi-
fication should also apply to the corresponding Wheeler-
DeWitt equations.

In [15] and [16], a one-parameter set of minisuperspace
metricsin arbitrary dimensionsis considered, from which we
have chosen only that one which gives classically the correct
correspondence to Einstein’s theory. In [15], the signature of
the superspace metric in dependence on the signature of the
underlying manifold is evaluated with the result that the
normal-hyperbolic character of the Wheeler-DeWitt equation
exists only for the Euclidean and the Lorentzian signature of
the underlying manifold.

In [17], Horiguchi, Maeda, and Sakmaoto perform an ex-
pansion of solutions of the Wheeler-DeWitt equation in pow-
ers of the Planck length. Vilenkin [18] compares several ap-

FIG. 6. Magnification of a subrange of Fig. 1.
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proaches to quantum cosmology, Kim and Page [19] discuss
quantum Friedmann models and power-law inflation, Kim
[20] compares quantum Friedmann models with conformally
and minimally coupled scalar fields. In Ref. [21], Bleyer and
Ivashchuk discuss multidimensional cosmological models
and their corresponding Wheeler-DeWitt equations. Refer-
ence [22] solves the Wheeler-DeWitt equation for scalar
fields as the source.

Reference [ 23] represents the famous paper in which the
‘‘Hartle-Hawking boundary conditions’ for the Wheeler-
DeWitt equation have been derived. One takes a path inte-
gral over al such space times V, whose boundary is the
prescribed spatial hypersurface V5.

In Ref. [24], Kiefer constructs wavepackets in minisuper-
space for a Friedmann Universe. An adiabatic approach is
used in the case of a massive scalar field, thereby assuming
the scale parameter a to be dlightly changing only. In Zeh
[24], these solutions are discussed under the point of view of
the definition of the direction of time. Our Eq. (4.1) coin-
cides with the form discussed in Ref. [24] [Eqg. (6.5) of Zeh,
and Eq. (2.2) of Kiefer]. The approximation of our Sec. IV D
was used by Kiefer [24] for solving the Wheeler-DeWitt
equation of a Friedmann Universe. In contrast to Kiefer's
procedure, where the harmonic oscillator has discrete eigen-
values and thus the wave function decreases for large values
of the scale factor «, we allow al real eigenvalues.

Conradi [25] solves the Wheeler-DeWitt equation for Bi-
anchi type-IX model and a massive scalar field. Grishchuk
and Sidorov [26] discuss the initial conditions for the
Wheeler-DeWitt equation, especially for the massive scalar
field in a closed Friedmann model.

In Ref. [27], Amendola, Khalatnikov, Litterio, and Oc-
chionero consider quantum cosmology with a complex field.
Guendelmann and Kaganovich [28] discuss cosmic time in
guantum cosmology. The factor-ordering problem is solved
such that the kinetic term gets the form O+ (R where &
= Econf .

A comparison of the minisuperspace of minimaly and
conformally coupled scalar fields was done by Page [29]. He
solves the factor-ordering problem of the Wheeler-DeWitt
equation by requiring that the kinetic term is proportional to
the Laplacian in the minisuperspace metric, i.e., our variant
B with e=1. The classical equation is similar to the geodesic
equation in superspace.

Reference [30] deals with quantum cosmology from the
path-integral point of view: The Wheeler-DeWitt equation
can be derived in afirst approximation from the correspond-
ing path integral. Halliwell [30] solves the factor-ordering
problem by requiring invariance with respect to field redefi-
nition of both the three metric and lapse function. Jafarizta-
deh, Darabi, and Rastegar [30] apply the method of Duru and
Kleinert to evaluate the path integral for quantum cosmol-
ogy, cf. Kleinert [30].

DeWitt [30] assumes the path integral to be the more
fundamental approach, but the Wheeler-DeWitt equation in
the minisuperspace to remain a good approximation to it.

By considering the Wheeler-DeWitt equation
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>y 4 =0
a k% a 23 y(a)=0,

Gibbons and Grishchuk [31] obtain the result that inflation is
typical in the set of spatially flat Friedmann models in Ein-
stein’s theory with a A term. The parameter p is due to the
factor-ordering ambiguity, they take p=1 as a preferred
value. An analogous result is given by Hawking and Page
[32]. Melnikov and Pevcov [33] discuss the factor-ordering
problem for the Wheel er-DeWitt equation in closed and open
Friedmann models and give some solutions to it.

Reuter and Schmidt [34] and Schmidt [35] derive the
Wheeler-DeWitt equation of fourth-order gravity for a spa-
tially flat Friedmann model and compare with the corre-
sponding conformally equivalent (due to the Bicknell theo-
rem) second-order models. The solution of Reuter-Schmidt
for flat Friedmann models is generalized in Ref. [36] by Pi-
mentel and Obregon to closed and open models. Fabris and
Reuter [36] continue to generalize the results of [34] to show
that the Bicknell theorem applies aso at the level of the
Wheeler-DeWitt equation.

Rainer [37] gives an overview on higher dimensions and
discusses three types of conformal transformations of differ-
ent levels for the Wheeler-DeWitt equation. Quite recently,
the solutions of the Wheeler-DeWitt equation in comparison
with the appearance of singularities is treated by Mongan
[38]. Zhang and Shen [39] consider quantum cosmology
with a complex scalar field at finite temperature. A critical
discussion of the Wheeler-DeWitt equation and an alterna-
tive quantization scheme is presented in Ref. [40] by Peres.

From recent constraint calculations of Hwang and Noh
[41] to an inflation model based on a nonminimally coupled
massive scalar field and comparisons with observational data
[Cosmic Background Explorer (COBE) Differential Micro-
wave Radiometer (DMR)], one can state that minimal cou-
pling is a good approximation for inflationary models. Fol-
lowing Futamase and Maeda [42], the coupling constant is
either quite small, £<1/1000, or negative. According to the
coupling factor (1— &¢2) in front of R, critical behavior ap-
pears for £é= ¢ 2, i.e., for positive values of & only.

B. Comparison with similar results by others

Let us start with explaining the misnomer with Schro-
dinger and Wheeler-DeWitt equation, see the footnotes to the
Introduction and to Sec. I11: In quantum mechanics, the clas-
sical Hamiltonian H gives (for a given energy E) rise to the

Schrodinger equation H(¥)=E- ¥, where ¥ is the time-
dependent wave function and H is the operator form of H. In
the most simple case and setting 7 =1 this equation reads

'(N,— 1A\If V-
T T am ST Y

and is of first order in t. With the ansatz ¥ = - e ' we get
an equation for the time-independent wave function ¢; it has
the following structure:
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1 Ay+V-y=0

+ . =
2m 4 =0,

where A is the spatial Laplacian, i.e., the operator d%/dx? in
the one-dimensional case. This equation is of second order,
and it is this form of the Schrodinger equation which one had
in mind when one compared with the Wheeler-DeWitt equa-
tion. However, even this is a yet-to-be-explained compari-
son: The Laplacian A appearing here is an €lliptic operator,
whereas in the corresponding place of the Wheeler-DeWitt
equation we have a differential operator of normal hyper-
bolic type, a point which was mentioned already many times,
e.g. in Ref. [15]. So, if one wishes to make the analogy of the
two equations more strict, then one has to allow a term with
negative kinetic energy in the classical Hamiltonian H to-
gether with all these known consequences for stability, etc.
Of course, formally it is possible to achieve this negativity
by an imaginary transformation of the corresponding coordi-
nate, and this procedure does work in the search for exact
solutions, but physically, of course, it really changes the sys-
tem. In other words: The imaginary transformation changing
from the Laplace- to the Klein-Gordon-type equation
changes also the character of the set of solutions.®

There exist problems with the probability interpretation of
the wave function of the universe, cf. Ref. [43]: Similarly as
for the one-dimensional free particle in quantum mechanics,
the world function can in general not be normalized, and one
has in the result statements about relative probabilities rather
than probabilities themselves, see also [44], and the recent
review [45] on this subject.

In [44] it is correctly stated that the approach, which is
also used here and all similar papers, has a further problem:
namely that the homogeneity of the cosmological model is
presumed before quantization. If taken literally, this would
lead, see Ref. [45] (Sec. I1), to aviolation of the uncertainty
principle. This problem should be dealt with by finding an
appropriate effective potential to be added.

As we did, Ref. [44] deals with the geometry of an aniso-
tropic Bianchi type-l| model. Otherwise the paper [44] deals
with the relation to N=1 supergravity which is not the topic
of the present paper.

References [36] and [45] (Sec. 1V) deal with the compari-
son of the Whedler-DeWitt equations in different, but classi-
cally conformally equivalent theories, especially with fourth-
order gravity theories following from a nonlinear Lagrangian
f(R), on the one hand, and with scalar-tensor theories, on the
other hand. As a rule one can summarize up to different
versions how to solve the factor-ordering problems, the con-
formal relation can be carried over from the classical to the
guantum theory.

19The topological origin of this difference is the noncompactness
of the Lorentz group as compared to the compactness of the rotation
group, cf. Ref. [49]. In practice, see, e.g., [45] and the references
cited there, this has the consequence, that the norm in the corre-
sponding Hilbert space becomes a pseudonorm, i.e., it losesits posi-
tive definiteness.
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The question for excited states is under debate, and our

guantization condition H¥=0 concerns only the ground
state. References [46] and [47] are closely related to ours, so
let us compare them in more detail: There such solutions of
the Wheeler-DeWitt equation have been found which can be
written by a separation ansatz. So, Ref. [47], Eq. (3) (though
deduced for the Brans-Dicke theory and a closed Friedmann
model), which contains the linear combination of two Hankel
functions in dependence on a?¢, can be compared with our
solution (4.12) representing the linear combination of two
Bessel functions (which is almost the same).

A further point to be discussed is the relation mentioned
in [47] of the quantum cosmology with quantum wormholes;
here we only mention a further approach [48] dealing with
wormhole-type solutions.

C. Discussion of the present paper

Let us now summarize our resultss We solved the
Wheeler-DeWitt equation for the minisuperspace of a cos-
mologica Bianchi type-l model with a minimally coupled
massive scalar field ¢ as the source by generalizing the cal-
culation of Lukash and Schmidt [1]. Contrarily to other ap-
proaches we allowed strong anisotropy.

Combining analytical and numerical methods, we applied
an adiabatic approximation for ¢, and as new feature we
found a period-doubling bifurcation of the typical solutions.
This bifurcation takes place near the cosmological quantum
boundary, i.e., the boundary of the quasiclassical region with
an oscillating ¢ function where the WKB approximation is
good. The numerical calculations suggest that such a notion
of a‘‘cosmologica quantum boundary’’ is well defined, be-
cause sharply beyond that boundary, the WKB approxima-
tion is no longer applicable.

This result confirms the adequateness of the introduction
of acosmological quantum boundary in quantum cosmology.
We applied the supercovariance principle, i.e., the underly-
ing theory should also be covariant with respect to transfor-
mations representing a mixture between space time and mat-
ter degrees of freedom. With our figures, we tried to
visualize the birth of the Universe.
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APPENDIX: VARIANT A VSVARIANT B

Until Eq. (4.6) we parallely dealt with variant A (e=0)
and B (e=1), but beginning from Eq. (4.7) we simplified by
restricting to variant A. Now we want to complete the cal-
culation by showing what changes using variant B.

The purpose of this Appendix is to show in detailed cal-
culations what has been verbally mentioned in the literature
several times, namely the fact that differences in solving the
factor-ordering problem do not essentially change the results.
For this consideration we now set e=1 in Eq. (4.6) and use
the definitions below that equation:

|

The transformation from Eq. (4.7) to Eq. (4.8) now leads to

d r9+ J
U&vv&v Uﬁv

+ 7202—/\2)3((0,@:0. (A1)

d? d
x2—y+2x—y+(x2—A2)y=0,

dx? dx (A2

whose solutions are also Bessel functions, modified by a fac-
tor x~ Y2

y(X)=x"YCd mzm@(¥) + Cod_ azrm(x)]  (A3)

where C;,C, are constants.

This means that the wave function (4.17) using variant A
is changed by multiplying by a factor \/3%e~3*/m¢. More-
over, the index A of the Bessel functions must be replaced

by VAZ+1/4.
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