Fluctuating Paths and Fields
W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann (Eds.)
(World Scientific, Singapore, 2001)

Part I. Path Integrals and Quantum Mechanics

B.R. Holstein Semiclassical Quantum Mechanics: A Path Integral Approach
N. Makri Forward-Backward Semiclassical Dynamics
T. Sauer The Feynman Path Goes Monte Carlo
A. Chervyakov Coordinate Independence of Path Integrals in One-Dimensional Target Space
M. Bachmann Perturbatively Defined Path Integral in Phase Space
I.H. Duru The Use of Non-Relativistic Path Integrals in Field Theories
N. Ünal Path Integration and Coherent States for the 5D Hydrogen Atom
D.H. Lin The Aharonov-Bohm Effect in Four Dimensions
K. Fujikawa Path Integral for Separable Hamiltonians of Liouville-Type
C.M. Bender, S. Boettcher, and P.N. Meisinger Conjecture on the Reality of Spectra of Non-Hermitian Hamiltonians
A. Inomata Time-Transformation Approach to q-Deformed Objects
Z. Haba Feynman Integral on a Group
P. Cartier, M. Berg, C. DeWitt-Morette, and A. Wurm Characterizing Volume Forms
L.H. Kauffman Vassiliev Invariants and Functional Integration

Part I. Path Integrals and Quantum Mechanics
Part II. Quantum Field Theory
Part III. Variational Perturbation Theory
Part IV. Phase Transitions and Critical Phenomena
Part V. Topological Defects, Strings, and Membranes
Part VI. Gravitation, Cosmology, and Astrophysics

Back to Main Page

Fluctuating Paths and Fields (World Scientific, Singapore, 2001)
Editorial Board: W. Janke, A. Pelster, H.-J. Schmidt, M. Bachmann